首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I)α1,α2,…,αn,其秩为r1,向量组(Ⅱ)β1,β2,…,βn,其秩为r2,且βi(i=l,2,…,s)均可以由α1,…α1线性表示,则( ).
设向量组(I)α1,α2,…,αn,其秩为r1,向量组(Ⅱ)β1,β2,…,βn,其秩为r2,且βi(i=l,2,…,s)均可以由α1,…α1线性表示,则( ).
admin
2019-07-23
35
问题
设向量组(I)α
1
,α
2
,…,α
n
,其秩为r
1
,向量组(Ⅱ)β
1
,β
2
,…,β
n
,其秩为r
2
,且β
i
(i=l,2,…,s)均可以由α
1
,…α
1
线性表示,则( ).
选项
A、向量组α
1
+β
1
,α
2
+β
2
,…,α
3
+β
3
;的秩为r
1
+r
2
B、向量组α
1
一β
1
,α
2
一β
2
,…,α
3
一β
3
的秩为r
1
一r
2
C、向量组α
1
,α
1
…,α
2
,β
1
,…α
3
-β
3
,的秩为r
1
+r
2
D、向量组α
1
,α
2
,…α
3
,β
1
,β
2
,…β
3
,的秩为r
1
答案
D
解析
设α’
1
,α’
2
,…,α’
r1
,.为α
1
,α
2
,…,α
3
的极大无关组,则它也是α
1
,α
2
,…,α
2
,β
1
,β
2
,…,β
s
的极大线性无关组,所以D结论成立.
转载请注明原文地址:https://jikaoti.com/ti/TAnRFFFM
0
考研数学三
相关试题推荐
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PT.AP为正定矩阵.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A.
设A为n阶非零矩阵,且A2=A,r(A)=r(0<r<n).求|5E+A|.
设问a,b,c为何值时,矩阵方程AX=B有解?有解时求出全部解.
设α是n维单位列向量,A=E-ααT.证明:r≤n.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,证明PQ可逆的充分必要条件是αTA-1α≠b.
就k的不同取值情况,确定方程x3-3x+k=0根的个数.
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令求:ρYZ.
设随机变量X1,X2,…,Xm+n(m<n)独立同分布,其方差为σ2,令求:D(Y),D(Z);
设随机变量X,Y相互独立,且Y~E(4),令U=X+2Y,求U的概率密度.
随机试题
男性,60岁,半年来吞咽困难,逐渐加重,近1个月来只能进半流质,锁骨上淋巴结未及肿大。该患者最可能的诊断是
构成照片影像的要素中,属于几何因素的是
除平肝潜阳,重镇降逆外,代赭石还具有的功效是
男,45岁。反复肝功能异常多年,尿少,双下肢水肿2年,加重2周。口服呋塞米20mg/d,1天来昏睡,呼之有反应,患者意识障碍最可能的原因是()
对于住宅侧面间距。应考虑防火与视线干扰因素。以下哪项不对?[2000年第83题]
一恒定出流薄壁小孔口,直径为d=2cm,作用水头H0=4m,则其出流量Q为()m3/s。
( )负责会计从业资格管理、会计专业技术职务资格管理、会计人员评优表彰奖惩以及会计人员继续教育。
按照皮亚杰的认知发展阶段理论,下列属于形式运算阶段心理特点的有()。
星垂平野阔,________。
Researchersinvestigatingbrainsizeandmentalabilitysaytheirworkoffersevidencethateducationprotectsthemindfromthe
最新回复
(
0
)