首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)为可导函数,F(χ)为其原函数,则( ).
设f(χ)为可导函数,F(χ)为其原函数,则( ).
admin
2018-05-17
37
问题
设f(χ)为可导函数,F(χ)为其原函数,则( ).
选项
A、若f(χ)是周期函数,则F(χ)也是周期函数
B、若f(χ)是单调函数,则F(χ)也是单调函数
C、若f(χ)是偶函数,则F(χ)是奇函数
D、若f(χ)是奇函数,则F(χ)是偶函数
答案
D
解析
令f(χ)=cosχ-2,F(χ)=sinχ-2χ+C,显然f(χ)为周期函数,但F(χ)为非周期函数,A不对;
令f(χ)=2χ,F(χ)=χ
2
+C,显然f(χ)为单调增函数,但F(χ)为非单调函数,B不对;
令f(χ)=χ
2
,F(χ)=
χ
3
+2,显然f(χ)为偶函数,但F(χ)为非奇非偶函数,C不对;
若f(χ)为奇函数,F(χ)=∫
a
χ
f(t)dt,
因为F(-χ)=∫
a
-χ
f(t)dt
∫
-a
χ
f(u)(-du)=∫
-a
χ
f(u)du
=∫
-a
a
f(u)du+∫
a
χ
f(u)du=∫
a
χ
f(u)du=F(χ),
所以F(χ)为偶函数,选D.
转载请注明原文地址:https://jikaoti.com/ti/SVdRFFFM
0
考研数学二
相关试题推荐
[*]
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其α2,α3,α4线性无关,α1=2α2-α3,如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
设函数f(x)在x=2的某邻域内可导,且f’(x)=ef(x),f(2)=1,则f’’’(2)=__________.
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
设函数y=y(x)由方程ex+y+cos(xy)=0确定,则dy/dx=__________.
已知齐次线性方程组求a,b,c的值.
设向量组a1,a2,a3线性无关,且a1+aa2+4a3,2a1+a2-a3,a2+a3线性相关,则a=__________.
若rA=1,则Ax=0的同解方程组是ax1+bx2+cx3=0且满足,若c≠0,方程组的通解是t1(c,0,一0)T+t2(0,c,一b)T,其中t1,t2为任意常数.若c=0,方程组的通解是t1(1,2,0)T+t2(0,0,1)T,其中t1,t2为任意
(2007年试题,23)设线性方程组(1)与方程x1+x2+x3=a-1(2)有公共解,求a的值及所有公共解.
(2009年试题,三(22))设(I)求满足Aξ2=ξ1,A2ξ3=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
随机试题
销售渠道的核心业务是产品的质量。()
数据流程图的特点是具有抽象性和_____性。
在Word编辑状态,如果要输入希腊字母Q,则需要使用的功能区是()
一年轻患者,男,24岁。夏秋季因饮食不慎出现泄泻腹痛,泻而不爽,胸腹满闷,口干不欲饮,舌苔微黄而腻,脉濡缓。
A.B.C.D.E.可待因的结构为()。
如图所示的机构的自重不计。已知:M=200kN.m,两杆等长为L=2m,D处的静摩擦系数f=0.6,载荷P作用在BD中点,则图示位置欲使机构保持平衡时的P的大小为()。
对会计账簿的监督主要从()方面着手。
质押担保是指借款人或第三人转移对法定财产的占有,将该财产作为贷款的担保。质押担保包括()。
下列各项中,不属于职工薪酬的是()。
患有肺结核、麻风病、天花、伤寒、病毒性肝炎、非典型肺炎等传染病的人员不予颁发导游证。()
最新回复
(
0
)