设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有( ).

admin2021-09-16  7

问题 设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有(          ).

选项 A、α1,α2,α3,kβ1+β2线性无关
B、aα1,α2,α3,kβ1+β2线性相关
C、α1,α2,α3,β1+kβ2线性无关
D、α1,α2,α3,β1+kβ2线性相关

答案A

解析 因为β1由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,所以β1+β2一定不可以由向量组α1,α2,α3线性表示,所以α1,α2,α3,kβ1+β2线性无关,选A.
转载请注明原文地址:https://jikaoti.com/ti/Ro4RFFFM
0

最新回复(0)