首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
f(x)在[0,1]上连续,(0,1)内可导, f(1)=xe1一xf(x)dx (k>1). 证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ一1)f(ξ).
f(x)在[0,1]上连续,(0,1)内可导, f(1)=xe1一xf(x)dx (k>1). 证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ一1)f(ξ).
admin
2016-06-25
22
问题
f(x)在[0,1]上连续,(0,1)内可导,
f(1)=
xe
1一x
f(x)dx (k>1).
证明:至少存在一点ξ∈(0,1),使f’(ξ)=(1一ξ
一1
)f(ξ).
选项
答案
F(x)=xe
一x
f(x),因f(1)=[*],F(1)=e
一1
f(1)=ηe
一η
f(η)=F(η),故在[η,1][*][0,1]上,对F(x)运用罗尔定理,可得ξ∈(η,1)[*](0,1),使f’(ξ)=(1一ξ
一1
)f(ξ).
解析
转载请注明原文地址:https://jikaoti.com/ti/RbzRFFFM
0
考研数学二
相关试题推荐
证明:当x>0时,(x2-1)lnx≥(x-1)2.
设f(x)∈c[a,b],在(a,b)内可导,f(a)=f(b)=1.证明:存在ξ,η∈(a,b),使得2e2ξ-η=(ea+eb)[f′(η)+f(η)].
设函数y=y(x)由确定,则y=y(x)在x=ln2处的法线方程为________.
设随机变量X服从参数为2的指数分布,令求:(1)(U,V)的分布;(2)U,V的相关系数.
讨论曲线y=4Inx+k与y=4x+In4x的交点个数.
设函数f(x),g(x)在[a,b]上连续,在(a,b)内具有二阶导数且存在相等的最大值,f(a)=g(a),f(b)=g(b),证明:存在ξ∈(a,b),使得f"(ξ)=g"(ξ).
广义积分=________。
设f(x)在[a,b]上连续,且x→a+时函数f(x)的极限存在,则函数f(x)在(a,b]上有界。
设cosx-1=xsina(x),其中|a(x)|<π/2,则当x→0时,a(x)是
随机试题
刘先生,58岁。赴宴饱餐后不久突然感到胸骨后持续性压榨样闷痛3小时,向左颈和肩臂部放射,伴大汗、心悸,惊恐不安。测BP80/50mmHg,面色苍白,烦躁不安。医生最后诊断刘先生患有“急性心肌梗死”,安置于CCU进行心电监护。一般应连续心电监护
对投资方向和内容作初步构想是业主在工程项目()阶段的工作任务。
从筹资的角度来看,下列筹资方式中筹资风险较小的是()。
毛泽东在下列哪篇文章中提出了“没有调查,就没有发言权”的著名论断?()
如果让你组织一次退休干部的旅游活动.你怎么组织?
(1)国足小将踢进两球(2)国足战胜敌队(3)国足获得小组出线权(4)小组赛如期进行(5)国足教练获得球迷好评
右面所给的四个选项中。哪一项是由左面给定的图形折成的?
设A为3阶可逆矩阵,将A的第1行的4倍加到第3行得B,下列结论正确的是().
Inalotteryapersonmaywinamilliondollarsormore.Whatwouldbetheadvantagesofwinningamilliondollars’?Wouldthere
A、Computersalesnegotiations.B、Apreliminaryinterview.C、AnInternetseminarmeeting.D、Computergames.B综合推断题。女士一开始就让男士介绍自己之
最新回复
(
0
)