首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
设函数f(x)在[0,π]上连续,且∫0πf(x)dx=∫0πf(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
admin
2018-12-29
38
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)dx=∫
0
π
f(x)cosxdx=0。试证明在(0,π)内至少存在两个不同的点ξ
1
,ξ
2
,使f(ξ
1
)=f(ξ
2
)=0。
选项
答案
令F(x)=∫
0
x
f(t)dt,0≤x≤π,则有F(0)=0,F(π)=0又因为 0=∫
0
π
f(x)cosxdx=∫
0
π
cosxdF(x)=∫
0
π
F(x)sinxdx, 所以存在ξ∈(0,π),使F(ξ)sinξ=0,不然,则在(0,π)内F(x)sinx恒为正或恒为负,与∫
0
π
F(x)sinxdx=0矛盾,但当ξ∈(0,π)时sinξ≠0,故F(ξ)=0。 再对F(x)在区间[0,ξ],[ξ,π]上分别用罗尔定理知,至少存在ξ
1
∈(0,ξ),ξ
2
∈(ξ,π),使得f′(ξ
1
)=f′(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0。
解析
转载请注明原文地址:https://jikaoti.com/ti/Ra1RFFFM
0
考研数学一
相关试题推荐
设函数f(x)在(一∞,+∞)内具有一阶连续的导数,L是上半平面(y>0)内的有向分段光滑曲线,其起点为(a,b),终点为(c,d).记证明:曲线积分I与路径无关.
设直线L过A(1,0,0),B(0,1,1)两点,将L绕z轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.求Ω的形心坐标.
假设随机变量X和Y的联合概率密度为求X和Y的联合分布函数F(x,y);
每次从1,2,3,4,5中任取一个数,且取后放回,用bi表示第i次取出的数(i=1,2,3).三维列向量b=(b1,b2,b3)T,三阶方阵求线性方程组Ax=b有解的概率.
已知事件A,B满足P(A)+P(B)=1,且A与B均不发生的概率等于A与B恰有一个发生的概率,则A,B同时发生的概率为______.
设总体X~N(μ,σ2),X1,X2,…,Xn为取自正态总体X的简单随机样本,且求E(X1Sn2).
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0)中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正交变换和对应的正交矩阵.
设Q(x,y)在Oxy平面有一阶连续偏导数,积分∫L2xydx+Q(x,y)dy与路径无关.恒有∫(0,0)(t,1)2xydx+Q(x,y)dy=∫(0,0)(1,t)2xydx+Q(x,y)dy,(*)求Q(x,y).
求曲线积分I=∫L2yzdx+(2z一z2)dy+(y2+2xy+3y)dz,其中L为闭曲线从原点向L看去,L沿顺时针方向.
随机试题
下面关于政策、程序和规则的说法不正确的是()
阅读下面的文字:守一城,捍天下,以千百就尽之卒,战百万日滋之师,蔽遮江淮,沮遏其势,天下之不亡,其谁之功也!当是时,弃城而图存者,不可一二数;擅强兵坐而观者,相环也。不追议此,而责二公以死守,亦见其自比于逆乱,设淫辞而助之攻也。《韩愈《张中丞传
Someyearsagoindustrieshadmorefreedomthantheyhavenow,andtheydidnotneedtobeascarefulastheymusttoday.Theyd
关于风湿热小儿对于预后的估计和治疗的选择,以下哪项具有重要意义
下列说法中,属于通货膨胀对企业财务活动影响的有()。
关于量和单位使用规范的说法,正确的是()。
课程设计
每年科学家都统计在主要繁殖地聚集的金蟾蜍的数量。在过去十年中,每年聚集在那里的金蟾蜍的数量从1500只下降到200只。显然,在过去的十年中,金蟾蜍的数量在急剧下降。以下哪项如果为真,能使上文中的结论适当地得出?
Formanypeopletoday,readingisnolongerrelaxation.Tokeepuptheirworktheymustreadletters,reports,tradepublication
北京胡同不但是北京普通老百姓的生活场所,它更是北京独特的文化名片,代表着北京的草根(grassroots)文化。
最新回复
(
0
)