首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
admin
2018-11-22
31
问题
设函数f(x)在[0,π]上连续,且∫
0
π
f(x)sinxdx=0,∫
0
π
f(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
选项
答案
反证法.如果f(x)在(0,π)内无零点(或有一个零点,但f(x)不变号,证法相同),即f(x)>0(或<0),由于在(0,π)内,亦有sinx>0,因此,必有∫
0
π
f(x)sinxdx>0(或<0).这与假设相矛盾。 如果f(x)在(0,π)内有一个零点,而且改变一次符号,设其零点为a∈(0,π),于是在(0,a)与(a,π)内f(x)sin(x一a)同号,因此∫
0
π
f(x)sin(x一a)dx≠0.但是,另一方面 ∫
0
π
f(x)sin(x一a)dx=∫
0
π
f(x)(sinxcosa—cosxsina)dx =cosa∫
0
π
f(x)sinxdx一sina∫
0
π
f(x)cosxdx=0. 这个矛盾说明f(x)也不能在(0,π)内只有一个零点,因此它至少有两个零点.
解析
转载请注明原文地址:https://jikaoti.com/ti/QF2RFFFM
0
考研数学一
相关试题推荐
=________。
=_________。
设函数φ(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数。(Ⅰ)证明对右半平面x>0内的任意分段光滑简单闭曲线C,有(Ⅱ)求函数φ(y)的表达式。
设随机变量X与Y独立,X在区间[0,2]上服从均匀分布,Y服从参数为2的指数分布,求:(Ⅰ)二维随机变量(X,Y)的联合概率密度;(Ⅱ)概率P{X≤Y}。
设f(x)连续可微,f(1)=1.G为不包含原点的连通区域,任取M,N∈G,在G内曲线积分(ydx一xdy)与路径无关.(Ⅰ)求f(x);(Ⅱ)求,取正向.
设X1,X2,X3,…,Xn是来自正态总体N(μ,σ2)的简单随机变量,X是样本均值,记
(92年)已知P(A)=P(B)=P(C)=,P(AB)=0,P(AC)=P(BC)=,则事件A、B、C全不发生的概率为_______.
已知函数y=f(x)在任意点x处的增量且当△x→0时,a是△x的高阶无穷小,y(1)=0,求y(e).
设f’(x)连续,f(0)=0,f’(0)≠0,F(x)=∫0xtf(t2-x2)dt,且当x→0时,F(x)~xn,求n及f’(0).
随机试题
Afterthebirthofmysecondchild,Igotajobatarestaurant.Havingworkedwithanexperienced【C1】________forafewdays,I
∫0sin3xsin2xdx.
气对尿液、肝液的调控作用是
不能引起败血症的细菌为
痢疾发病率最高人群为
轻按即得,重按反减的脉象是脉形宽大,来盛去衰,来大去长的脉象是
甲旅行社的欧洲部副经理李某,在劳动合同未到期时提出辞职,未办移交手续即到了乙旅行社,并将甲社的欧洲合作伙伴情况、旅游路线设计、报价方案和客户资料等信息带到乙社。乙社原无欧洲业务,自李某加入后欧洲业务猛增,成为甲社的有力竞争对手。现甲社向人民法院起诉乙社和李
SQL语言提供数据库定义、______和数据摔制等功能。
函数f(x)=,已知f(x)=0有3个解,求a的取值范围.
公安机关历来高度重视公安队伍建设,毫不动摇地坚持政治建警、从严治警方针。但目前还是有极少数民警存在作风不硬、要求不严等问题。下列情形根据相关要求无须进行处理的是()。
最新回复
(
0
)