首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1,过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1,过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒
admin
2016-08-14
25
问题
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1,过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S
2
,并设2S
1
一S
2
恒为1,求此曲线y=y(x)的方程.
选项
答案
曲线y=y(x)上点P(x,y)处的切线方程为 Y—y=y’(x)(X—x) [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/Q7PRFFFM
0
考研数学一
相关试题推荐
设f(x)在区间(-∞,﹢∞)上连续,且满足f(x)=∫0xf(x-t)sintdt﹢x.则在(-∞,﹢∞)上,当x≠0时,f(x)()
计算二重积分(x+y)dσ,其中区域D是由直线x=-2,y=0,y=2及曲线x=-所围成的平面区域.
设A为三阶矩阵,其特征值为λ1=-2,λ2=λ3=1,其对应的线性无关的特征向量为α1,α2,α3,令P=(4α1,α2-α3,α2+2α3),则P-1(A*+3E)P为_______.
微分方程(3y一2x)dy=ydx的通解是________.
设矩阵,且方程组Ax=β无解.求方程组ATAx=ATβ的通解.
微分方程y”-4y’+8y=e2x(1+cos2x)的特解可设为y*=().
微分方程y”’-y=0的通解为________.
设函数f(x,y)可微,且f(x+1,ex)=x(x+1)2,f(x,x2)=2x2lnx,则df(1,1)=().
设三阶常系数其次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为()。
设连续函数f(x)满足f(x)=,则f(x)=__________.
随机试题
范例教学理论的提出者是【】
女,8岁。因突然心慌、脉速、昏迷,神志不清入院,呼气有烂苹果味。家长诉:近5个月有多饮、多尿、便秘、消瘦,可能的医疗诊断是
下列哪种情况适用加工贸易保证金台账的“空转”______。
根据公司法律制度的规定,公司合并时,应当依法通知债权人并在报纸上公告。下列有关公司通知债权人及公告的表述中,符合规定的是()。
学术界把明末以后称作“中西文化融会期”。促成这一“文化融会期”出现的主要因素是()。
H市人民政府为建幼儿园,向该市S银行贷款1000万元,到期末能偿还,S银行以H市人民政府为被告向人民法院提起诉讼。该案所涉及的法律关系()。
一个蓄水池注满水需要40分钟,将水排光需要1个小时,同时打开放水口和排水口,将半满的水池放水到4/5,需要多长时间?()
有的哲学家说,在大风扬起的尘土中,每一粒尘土的运动状况都是纯粹必然的。这是一种()。
以“团结合作”为主题。组织一次大约50人参加的拓展培训活动。你怎么组织?
下列医学常识叙述正确的是()。
最新回复
(
0
)