设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1,过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒

admin2016-08-14  25

问题 设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1,过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2恒为1,求此曲线y=y(x)的方程.

选项

答案曲线y=y(x)上点P(x,y)处的切线方程为 Y—y=y’(x)(X—x) [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/Q7PRFFFM
0

最新回复(0)