首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
假设: (1)函数y=f(x)(0≤x<∞)满足条件f(0)=0和0≤f(x)≤ex-1; (2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2; (3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
假设: (1)函数y=f(x)(0≤x<∞)满足条件f(0)=0和0≤f(x)≤ex-1; (2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2; (3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
admin
2022-10-13
43
问题
假设:
(1)函数y=f(x)(0≤x<∞)满足条件f(0)=0和0≤f(x)≤e
x
-1;
(2)平行于y轴的动直线MN与曲线y=f(x)和y=e
x
-1分别相交于点P
1
和P
2
;
(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P
1
P
2
的长度,求函数y=f(x)的表达式。
选项
答案
如图所示可知 ∫
0
x
f(x)dx=e
x
-1-f(x) 两端求导,得 f(x)=e
x
-f’(x),即f’(x)+f(x)=e
x
由一阶线性方程求解公式,得 f(x)=(∫Q(x)e
∫P(x)dx
dx+C)e
-∫P(x)dx
=(∫e
x
e
x
dx+C)e
-x
=Ce
-x
+[*]e
x
由f(0)=0得C=-[*],因此所求函数为 f(x)=[*](e
x
-e
-x
) [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/PvGRFFFM
0
考研数学三
相关试题推荐
假设由自动生产线加工的某种零件的内径X(单位:毫米)服从正态分布N(μ,1),内径小于10或大于12的为不合格品,其余为合格品,销售每件合格品获利,销售每件不合格品亏损.已知销售利润T(单位:元)与销售零件的内径X有如下关系:,问平均内径μ取何值时,销售一
设,其中f(u,v)是连续函数,则dz=___________·
已知X的分布函数为F(x),概率密度为f(x),a为常数,则下列各函数中不一定能作为随机变量概率密度的是()
设A为三阶非零矩阵,已知A的各行元素和为0,且AB=O,其中B=,则Ax=0的通解为__________。
设(Ⅰ)计算行列式|A|;(Ⅱ)当实数a为何值时,方程组Ax=易有无穷多解,并求其通解。
设某工厂生产甲乙两种产品,产量分别为x件和y件,利润函数为L(x,y)=6x-x2+16y-4y2-2(万元).已知生产这两种产品时,每件产品都要消耗原料2000kg,现有该原料12000kg,问两种产品各生产多少时总利润最大?最大利润是多少?
设线性方程组①与方程x1+2x2+x3=a一1②有公共解,求a的值及所有公共解.
求下列微分方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx;(Ⅱ)(1+y2)dx=(arctany-x)dy;(Ⅲ)y’+2y=sinx;(Ⅳ)eyy’-=x2(Ⅴ)(Ⅵ)(x2-3y2)x+(3x2-y2)=0;
问λ为何值时,线性方程组有解,并求出解的一般形式.
设函数f(x,y)连续,且,其中D是一个封闭区域,由y=x2和直线y=1围成,求f(x,y)的表达式。
随机试题
活塞式压缩机的油位应在()的中线附近,最高不应超过2/3高度。
治疗下利清水,色纯青,腹痛拒按,口干舌燥,脉滑实等症的最佳方剂是
最可能的诊断是最可行而有价值的诊断是
痢疾的凶险证候出现在
柴油发电机房布置在民用建筑内时,应符合()规定。
关于注册商标无效宣告,下列说法错误的是()。
侦查实验应禁止()。
文化实力和竞争力是国家富强、民族振兴的重要标志。()
中国逐步变成半封建社会的原因是()
Coffeecanbeconsideredoneofnature’sgreatestgifts.Itgivesmentalandemotional【S1】withoutharmfulsideeffects,andit
最新回复
(
0
)