首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-82x3为标准形.
求一个正交变换,化二次型f=x12+4x22+4x32-4x1x2-82x3为标准形.
admin
2013-08-30
36
问题
求一个正交变换,化二次型f=x
1
2
+4x
2
2
+4x
3
2
-4x
1
x
2
-8
2
x
3
为标准形.
选项
答案
二次型的矩阵是A=[*] 其特征多项式为|λE-A|=[*] 所以A的特征值是λ
1
=λ
2
=0,λ
3
=9. 对于是λ
1
=λ
2
=0,由(OE-A)x=0,即[*] 得到基础解系a
1
=(2,1,0)
T
,a
2
=(-2,0,1)
T
,即为属于特征值λ=0的特征向量. 对于λ
3
=9,由(9E-A)x=0,即[*] 得到基础解系a
3
=(1,-2,2)
T
. 由于不同特征值的特征向量已经正交,只需对a
1
,a
2
正交化. β
1
=a
1
=(2,1,0)
T
, [*] 把β
1
,β
2
,a
1
单位化,有r
1
=[*] 那么经正交变换[*],二次型f化为标准形f=9y
3
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/OicRFFFM
0
考研数学一
相关试题推荐
(1990年)已知函数f(χ)具有任意阶导数,且f′(χ)=[f(χ)]2,则当n为大于2的正整数时,f(χ)的n阶导数f(n)(χ)是【】
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},f(x)为D上的正值连续函数,a,b为常数,则
(2014年)设f(χ)是周期为4的可导奇函数,且f′(χ)=2(χ-1),χ∈[0,2],则f(7)=_______.
证明:函数在区域上的最小值为8
设z=z(x,y)是由方程f(y-x,yz)=0所确定的隐函数,其中函数f对各个变量具有连续的二阶偏导数,求
设函数.设数列{xn}满足证明存在,并求此极限.
设线性方程组设a1=a3=k,a2=a4=-k(k≠0),且β1=(-1,1,1)T,β2=(1,1,-1)T是该方程组的两个解,写出此方程组的通解.
求下列函数的导数:;
确定常数a使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(0,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
下列反常积分中发散的是()
随机试题
A、Itistoocomplicatedtounderstand.B、Itarousesherinterestinaccounting.C、Itisn’tasboringassheexpected.D、Itisth
(2018年淄博)强调丰富性、关联性、回归性、严密性的课程理论是()
坚持独立自主的和平外交政策的首要任务是()。
下列哪项为评价肾脏功能最重要的实验室指标
在计算机系统中,设备管理是指对()。
根据《国家赔偿法》的规定,下列各项中可以构成公安刑事赔偿的情形是()。
一个大的社会性事件发生以后,如果权威机构不能及时公布事件真相,就会谣言满天飞。当然,权威机构要能及时公布事件真相,必须及时确定真相;要及时确定真相,必须有效地运用各种手段,包括必要的高科技手段。如果上述断定为真,则以下哪项一定为真?
新民主主义社会不是一个独立的社会形态,它本身具有
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵,其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
Itisoftenobservedthattheagedspendmuchtimethinkingandtalkingabouttheirpastlives,【C1】______aboutthefuture.Thes
最新回复
(
0
)