首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2009年试题,18) 证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a);
(2009年试题,18) 证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a);
admin
2014-07-06
36
问题
(2009年试题,18)
证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)可导,则存在ξ∈(a,b),使得f(b)一f(a)=f
’
(ξ)(b一a);
选项
答案
作辅助函数[*]可验证φ(x)满足:φ(a)=φ(b)=0;φ(x)在闭区间[a,b]上连续,在开区间(a,b)内可导.由罗尔定理可得,在(a,b)内至少有一点ξ,使φ
’
(ξ)=0,即[*]故有f(b)一f(a)=f
’
(ξ)(b一a),命题得证.
解析
转载请注明原文地址:https://jikaoti.com/ti/NwcRFFFM
0
考研数学一
相关试题推荐
设函数f(x)在区间(0,+∞)内有定义,且对于任意的x∈(0,+∞),y∈(0,+∞),有f(xy)=f(x)+f(y)+(x-1)(y-1),又设f’(1)存在且等于a,a≠1.证明对任意的x∈(0,+∞),f’(x)存在,并求f’(x);
设函数y=y(x)满足xdy/dx-(2x2-1)y=x3,x≥1,y(1)=y0.已知存在,求y0的值,并求极限.
求函数g(x,y,z)=的最大值,并求出一个最大值点.
设y=(1+x2sinx)3x,则dy∣x=π=________.
求微分方程y=y4满足条件y(0)=1,y′(0)=1的特解.
已知三元二次型f(x1,x2,x3)=xTAx其矩阵A各行元素之和均为0,且满足AB+B=0,其中若A+kE正定,求k的取值.
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
已知f(x)是周期为5的连续函数,它在x=0的某邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x)其中a(x)是当x→0时比x高阶的无穷小,且f(x)在x=1处可导,求y=f(x)在点(6,f(6))处的切线方程。
设函数y=y(x)由参数方程确定,求曲线y=y(x)为凹时,x的取值范围。
已知曲线的极坐标方程r=1-cosθ,求曲线上对应于θ=处的切线与法线的直角坐标方程。
随机试题
一家长带小儿来医院进行体格检查,欲衡量小儿的营养状况。该小儿的体重为12kg,其正常年龄大约为
新生儿败血症病原体未明确时,首选的抗生素是
何某死后留下一间价值六万元的房屋和四万元现金。何某立有遗嘱,四万元现金由四个子女平分,房屋的归属未作处理。何某女儿主动提出放弃对房屋的继承权,于是三个儿子将房屋变卖,每人分得两万元。现债权人主张何某生前曾向其借款12万元,并有借据为证。下列哪些说法是错误的
请简述工程建设项目的监理制度。
关于招标文件的补充或修改的表述中,不正确的是()。
关于遗产,下列说法错误的是( )。
下列有关市盈率的说法正确的有()。
我国第一本《教育心理学》教科书是廖世承于()年编写的。
他们______地要使我永远不能再拿笔。填入划横线部分最恰当的一项是()。
在社会主义初级阶段,多种分配方式并存是收入分配制度的一大特点。按劳分配以外的多种分配方式,其实质就是按对生产要素的占有状况进行分配。按生产要素分配有多种不同的分配方式,就其内容可以分为()。
最新回复
(
0
)