首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
admin
2019-03-14
29
问题
设α
1
,α
2
,…,α
s
都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
答案
A
解析
本题考的是线性相关性的判断问题,可以用定义说明(A)的正确性,做法如下:
因为α
1
,α
2
,…,α
s
线性相关,所以存在不全为0的数c
1
,c
2
,…,c
s
使得
c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0,
用A左乘等式两边,得
c
1
Aα
1
+c
2
Aα
2
+…+c
s
Aα
s
=0,
于是Aα
1
,Aα
2
,…,Aα
s
线性相关.
但是用秩来解此题,则更加简单透彻.只要应用两个基本性质,它们是:
1.α
1
,α
2
,…,α
s
线性无关
r(α
1
,α
2
,…,α
s
)=s.
2.r(AB)≤r(B).
矩阵(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
),因此
r(Aα
1
,Aα
2
,…,Aα
s
)≤r(α
1
,α
2
,…,α
s
).
于是,若α
1
,α
2
,…,α
s
线性相关,有r(α
1
,α
2
,…,α
s
)<s,从而r(Aα
1
,Aα
2
,…,Aα
s
)<s,Aα
1
,Aα
2
,…,Aα
s
线性相关.
转载请注明原文地址:https://jikaoti.com/ti/NZLRFFFM
0
考研数学二
相关试题推荐
设f(x,y)连续,且,其中D是由所围成的区域,则f(x,y)=_________。
积分=_________。
交换积分次序∫1edx∫0lnxf(x,y)dy为()
求下列各函数的导数:
求下列不定积分(其中a为常数):
(Ⅰ)证明积分中值定理:若函数f(x)在闭区间[a,b]上连续,则至少存在一点η∈[a,b],使得∫abf(x)dx=f(η)(b一a);(Ⅱ)若函数φ(x)具有二阶导数,且满足φ(2)>φ(1),φ(2)>2φ(x)dx,则至少存在一点ξ∈(1,3),
设f(x)在x=a处可导,且f(a)=1,f’(a)=3,求数列极限ω=
设随机变量X和Y相互独立,且均服从参数为1的指数分布,记U=max(X,Y),V=min(X,Y).(1)求V的概率密度fV(v);(2)E(U+V),E(UV).
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0
设矩阵A,B满足A*BA-2BA-8E,其中A=,E为单位矩阵,A*为A的伴随矩阵,则B=______.
随机试题
患者,女,50岁,初诊为高血压,目前血压维持在145/85mmHg。护士在评估中发现患者喜好下列食物。护士应指出,其中最不利于控制高血压的食物是()。
新生儿寒冷损伤综合征治疗的关键是
肺炎球菌性肺炎的铁锈色痰,是因为
气逆痰阻型呃逆的治疗宜选用
腹腔镜胆囊切除优于开腹胆囊的原因是
工程项目建设管理的组织结构模式有()。
根据以下资料,回答问题。2011年全国农民工总量达到25278万人,比上年增长1055万人,增长4.4%。农民工从业仍以制造业、建筑业和服务业为主,从事建筑业的比重明显提高。从农民工的就业地区来看,2011年在东部地区务工的农民工16537万人,比上年增
求函数的偏导数zx’.
请在【答题】菜单下选择【进入考生文件夹】命令,并按照题目要求完成下面的操作。注意:以下的文件必须都保存在考生文件夹下。“天河二号超级计算机”是我国独立自主研制的超级计算机系统,2014年6月再登“全球超算500强”榜首,为祖国再次争得荣
A、Childrenareunabletoanalyzeandjudgeadvertisements.B、Childrenareunabletogiveconsentsincetheyaretooyoung.C、Chi
最新回复
(
0
)