首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设αi=(αi1,αi2,…,αin)T(i=1,2,…,r,r<n)是n维实向量,且α1,α2,…,αr线性无关,已知β=(b1,b2,…,bn)T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2021-02-25
36
问题
设α
i
=(α
i1
,α
i2
,…,α
in
)
T
(i=1,2,…,r,r<n)是n维实向量,且α
1
,α
2
,…,α
r
线性无关,已知β=(b
1
,b
2
,…,b
n
)
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
设有一组数x
1
,x
2
,…,x
r+1
使得 x
1
α
1
+x
2
α
2
+…+x
r
α
r
+x
r+1
β=0, (*) 用β
T
左乘(*)式两端,由于β是方程组的非零解,所以β
T
α
i
=0(i=1,2,…,r),从而得x
r+1
β
T
β=0,而β≠0,故 β
T
β≠0,从而x
r+1
=0,代入(*)式并注意到向量组α
1
,α
2
,…,α
r
线性无关,可得x
1
=0,x
2
=0,…,x
r
=0,所以向量组α
1
,α
2
,…,α
r
,β线性无关.
解析
本题是向量与方程组的综合题.注意β=(b
1
,b
2
,…,b
n
)
T
是线性方程组的解,则有
即β
T
α
i
=0(i=1,2,…,r).
转载请注明原文地址:https://jikaoti.com/ti/MpARFFFM
0
考研数学二
相关试题推荐
设α为n维非零列向量,E为n阶单位阵,试证A=E—为正交矩阵。
证明
已知r(a1,a2,a3)=2,r(a2,a3,a4)=3,证明:a1能由a2,a3线性表示;
设f(x)在[0,+∞)内可导且f(0)=1,f’(x)<f(x)(x>0).证明:f(x)<ex(x>0).
A是三阶矩阵,λ1,λ2,λ3是三个不同的特征值,ξ1,ξ2,ξ3是相应的特征向量.证明:向量组A(ξ1+ξ2),A(ξ2+ξ3),A(ξ3+ξ1)线性无关的充要条件是A是可逆矩阵.
设函数f(μ)在(0,+∞)内具有二阶导数,且z=满足等式=0。验证f’’(μ)+=0;
证明
设向量α1,α2,…,αn-1是n—1个线性无关的n维列向量,ξ1,ξ2是与α1,α2,…,αn-1均正交的n维非零列向量。证明:ξ1,ξ2线性相关;
设A=,B=U-1A*U.求B+2E的特征值和特征向量.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
随机试题
就艺术存在方式而言,艺术品所具有的三个基本特征是什么?
最基本、最主要的行政监督模式是()
宜空腹服的药物有( )。
某企业有玻璃器皿生产车间,该企业的玻璃器皿制造分为烧制玻璃熔液、吹制成型和退火处理三道主要工序,烧制玻璃溶液的主要装置是玻璃熔化池炉。烧制时,从炉顶部侧面人工加入石英砂(二氧化硅)、纯碱(氢氧化钠)、三氧化二砷等原料,用重油和煤气作燃料烧至1300~170
税务登记不包括()。
无形资产是采用直线法平均计算每期摊销额,并且()。
孩子,听了你的话,我终于决定不再打你了。________你已经长大,________你已经懂得了很多的道理,毫不懂道理的婴儿和已经很懂道理的成人,我认为都不必打。________对半懂不懂、自以为懂其实不甚懂得道理的孩童,才可以打,以助他们快快长大。填入
社会主义建设必然具有艰巨性和长期性,其原因包括()
符合结构化原则的三种基本控制结构是顺序结构、______________和循环结构。
Thesedayssearchingforanumber【C1】______telephonedirectoryseemsveryold-fashioned.Voicerecognitionsystemsarebecoming
最新回复
(
0
)