首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设x>0,y>0,z>0,求函数f(x,y,z)=xyz3在约束条件x2+y2+z2=5R2(R>0为常数)下的最大值; (2)由(1)的结论证明:当a>0,b>0,c>0时,下述不等式成立:
(1)设x>0,y>0,z>0,求函数f(x,y,z)=xyz3在约束条件x2+y2+z2=5R2(R>0为常数)下的最大值; (2)由(1)的结论证明:当a>0,b>0,c>0时,下述不等式成立:
admin
2018-11-22
25
问题
(1)设x>0,y>0,z>0,求函数f(x,y,z)=xyz
3
在约束条件x
2
+y
2
+z
2
=5R
2
(R>0为常数)下的最大值;
(2)由(1)的结论证明:当a>0,b>0,c>0时,下述不等式成立:
选项
答案
(1)由拉格朗日乘数法,设 F(x,y,z,λ)=xyz
3
+λ(x
2
+y
2
+z
2
-5R
2
), 令 [*] 由①,②得λ(x=y)=0.若λ=0,则有xyz=0,与题设条件x>0,y>0,z>0不符,故得x=y,因此得 z
3
+2λ=0,3x
2
z+2λ=0,2x
2
+z
2
=5R
2
. 于是得 3x
2
-z
2
=0及2x
2
+z
2
=5R
2
, 从而得唯一的一组解: x=R,y=R, [*] 此时对应的f(x,y,z)=xyz
3
在约束条件x
2
+y
2
+z
2
=5R
2
下达到最大: [*] (2)由(1)已知,当x
2
+y
2
+z
2
=5R
2
且x>0,y>0,z>0时, [*] 令a=x
2
,b=y
2
,c=z
2
,有 [*] 证毕.
解析
转载请注明原文地址:https://jikaoti.com/ti/MZ1RFFFM
0
考研数学一
相关试题推荐
在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为______。
随机事件A与B互不相容,0<P(A)<1,则下列结论中一定成立的是()
过坐标原点作曲线y=lnx的切线,该切线与曲线y=lnx及x轴围成平面图形D。(Ⅰ)求D的面积A;(Ⅱ)求D绕直线x=e旋转一周所得旋转体的体积V。
设f(u,v)具有连续偏导数,且fu(u,v)+fv(u,v)=sin(u+v)eu+v,求y(x)=e-2xf(x,x)所满足的一阶微分方程,并求其通解。
设随机变量Y服从参数为λ=1的泊松分布,随机变量Xk=,k=0,1。试求:X0和X1的联合分布律;
设A=(aij)n×n的秩为n,求齐次线性方程组Bx=0的一个基础解系,其中B=(aij)r×n,r<n。
已知四元非齐次线性方程组系数矩阵的秩为2,它的三个解向量为η1,η2,η3,且η1+2η2=(2,0,5,-1)T,η1+2η3=(4,3,-1,5)T,η3+2η1=(1,0,-1,2)T,求方程组的通解。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若α1+2α2-α3=β,α1+α2+α3+α4=β,2α1+3α2+α3+2α4=β,k1,k2为任意常数,那么Aχ=β通解为()
求幂级数的收敛域,并求其和函数.
设f(x,y)是定义在区域0≤x≤1,0≤y≤1上的二元连续函数,f(0,0)=-1,求极限
随机试题
A.高尿酸血症B.骨吸收与骨再生并存C.半月板病变D.多发生于髋、膝关节E.多发生于手、足小关节畸形性骨炎的临床特征为
酶反应速率对底物浓度作图,当底物浓度达一定程度时,得到的是零级反应,对此最恰当的解释是()。
关于药品分类管理的说法,正确的有
下列各项中,属于商业汇票绝对记载事项的是()。
证券投资咨询业务是指()。
下列各项中,需调整增加企业应纳税所得额的有()。
对网络安全构成威胁的主要因素有()。
你认为什么样的领导是好领导?
水力:煤炭:发电
Access数据库最基础的对象是()。
最新回复
(
0
)