首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
λ取何值时,非齐次线性方程组①有唯一解、②无解、③有无限多个解?并在有无限多解时求其通解.
λ取何值时,非齐次线性方程组①有唯一解、②无解、③有无限多个解?并在有无限多解时求其通解.
admin
2021-02-25
53
问题
λ取何值时,非齐次线性方程组
①有唯一解、②无解、③有无限多个解?并在有无限多解时求其通解.
选项
答案
方法一:用初等变换的方法. [*] ①当λ≠1且λ≠一2时R(A)=R(A,b)=3,方程组有唯一解. ②当λ=一2时,R(A)=2<R(A,b)=3,方程组无解. ③当λ=1时,R(A)=R(A,b)=1<3,因此方程组有无限多个解. 方法二:系数矩阵行列式|A|=[*]=(λ—1)
2
(λ+2),因此 ①当λ≠1,λ≠一2时,方程组有唯一解; ②当λ=一2时,有(A,b)=[*] 因此R(A)=2<R(A,b)=3,方程组无解; ③当λ=1时,(A,b)→[*],则R(A)=R(A,b)=1.方程组有无限多个解. 当λ=1时,同解方程组为x
1
=一x
2
—x
3
+1,故通解为 [*],其中k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/MUARFFFM
0
考研数学二
相关试题推荐
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P—1AP=B。
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c是唯一的.
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以y=f(x)为曲边的曲边梯形的面积;
设有向量组(I):α1=(1,0,2)T,α2=(1,1,3)T,α1=(1,-1,a+2)T和向量组(II):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T.试问:当a为何值时,向量组(I)与(II)等价?当以为何值
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
已知向量组(Ⅰ)能由向量组(Ⅱ)线性表出,且秩(Ⅰ)=秩(Ⅱ),证明向量组(Ⅰ)与向量组(Ⅱ)等价.
设a1,a2,a3是四元非齐次方程组Ax=b的三个解向量,且秩r(A)=3,a1=(1,2,3,4)T,a2+a3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=().
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设三阶常系数齐次线性微分方程有特解y1=ex,y2=2xex,y3=3e-x,则该微分方程为().
随机试题
HbF含量增高见于
新生儿出血选用的止血药是
患者,女,40岁。白带增多,会阴部、肛周有数个大小不等赘生物45天,自觉痒感,异物感,局部皮肤损伤有渗出液、出血、疼痛。会阴及肛周局部潮红,有淡红色丘疹及米粒至豆大赘生物数个,呈菜花状,有蒂,少数呈鸡冠状肿物。苔黄腻,脉滑或弦数。妇科检查:外阴大阴唇外侧有
小儿急性肾小球肾炎风水相搏证的治则为
甲、乙双方于2010年5月22日签订了一份买卖合同,在合同中约定甲方货到后乙方付款。在此期间甲公司听说乙公司的经营状况不好就中止了发货,但后经证实是谣传。则甲公司的行为属于()。
在欣赏《溜冰圆舞曲》时,下列哪个活动强调了学生对音乐的体验与实践?()
从修辞角度看,在下列各句横线处,依次填入最恰当的词语。苦瓜苗就像一个__________一样,自生自长,蔫蔫的,一幅要死不活的样子。然而,它却努力活了下来,便渐渐长大。它似乎满是敌意,一天比一天不规矩,或绕着南瓜藤,或在冬瓜架上__________
甲盗割正在使用中的通讯电缆致通讯中断,既符合盗窃罪的犯罪构成,也符合破坏公用电信设施罪的犯罪构成。甲的犯罪属于()。(2009年单选18)
Keywordcanbeusedtoensurethatablockofcoderunstocompletionwith-out______byotherthreads.
Academicteachinghospitals—whichareusually______tomedicalschools—accountedforabout10%ofallhospitals.
最新回复
(
0
)