首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2). 证明:
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2). 证明:
admin
2019-06-28
26
问题
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x
1
,x
2
∈[a,b]满足:f(tx
1
+(1-t)x
2
)≤tf(x
1
)+(1-t)f(x
2
).
证明:
选项
答案
因为∫
a
b
f(x)dx=(b-a)∫
0
1
f[ta+(1-tb)]dt ≤(b-a)[f(a)∫
0
1
tdt+f(b)∫
0
1
(1-t)dt]=[*] [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/LsLRFFFM
0
考研数学二
相关试题推荐
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
函数F(x)=∫1x(1一ln)dt(x>0)的递减区间为___________.
设f(x,y,z)=exyz2,其中z=z(x,y)是由x+y+z+xyz=0确定的隐函数,则f’x(0,1,-1)=_______.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α1线性无关,若β=α1+2α2一α3=α1+α2+α3一α4=α1+3α2+α3+2α4,则Ax=β的通解为_____.
设3阶矩阵A=(α1,α2,α3)有3个不同的特征值,且α3=α1+2α2。设β=α1+α2+α3,求方程组Ax=β的通解。
设函数f(x)=lnx+(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
随机试题
脾胃为
工程测量用经纬仪的主要功能是()。
某月30d,绞吸挖泥船完成工程量20万m3,该船时间利用率60%,已知该船排泥管径为0.6m,泥浆浓度10%。问题:计算管内泥浆流速;
下列防烟排烟系统调试单机调试对防火阀、排烟防火阀调试说法中,不符合要求的是()。
甲被车撞伤倒地,行人乙拦下一辆出租车,将甲送往医院,乙支付了车费,其间,甲的手机丢失。下列表述中正确的是()。
左边图形折起来,将得到右边哪一个图形?()
张教授:毕加索的每幅画都是杰作。李研究员:不对。有几幅达维和特莱克劳斯的绘画杰作也陈列在巴黎罗浮宫。李研究员显然认为张教授话中包含了以下哪项断定?
以下关于用例图的叙述中,不正确的是(44)。图书馆管理系统需求中包含“还书”用例和“到书通知”用例,对于“还书”用例,应先查询该书是否有人预定,若有则执行“到书通知”。“还书”用例和“到书通知”用例是(45)关系,以下用例图中,(46)是正确的。管理员处
可以通过()的方法来输出一个二维数组中的各个元素。
ElNinoWhilesomeforecastingmethodshadlimitedsuccesspredictingthe1997ElNinoafewmonthsinadvance,theColumbia
最新回复
(
0
)