首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2018-04-12
55
问题
已知四阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为四维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
。若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
令x=[*],则Ax=(α
1
,α
2
,α
3
,α
4
)[*]=β。 且得x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
, 将α
1
=2α
2
-α
3
代入上式,整理后得 (2x
1
+x
2
—3)α
2
+(一x
1
+x
3
)α
3
+(x
4
—1)α
4
=0。 因α
2
,α
3
,α
4
线性无关,知[*] 解此方程组得x=[*],其中k为任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/qadRFFFM
0
考研数学二
相关试题推荐
设函数f(x)在(-∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2-4),若对任意的x都满足f(x)=kf(x+2),其中k为常数.问k为何值时,f(x)在x=0处可导.
设D是位于曲线下方、x轴上方的无界区域.当a为何值时,y(a)最小?并求此最小值.
设曲线y=ax2(a>0,x≥0)与y=1-x2交于点A,过坐标原点O和点A的直线与曲线y=ax2围成一平面图形.问a为何值时,该图形绕x轴旋转一周所得的旋转体体积最大?最大体积是多少?
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆.现将贮油罐平放,当油罐中油面高度为3/2b时(如图),计算油的质量.(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
求微分方程(y+x2e-x)dx-xdy=0的通解y.
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2,(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设矩阵,已知线性方程组Ax=β有解但不唯一.试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2-α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
随机试题
以下______单元格引用是绝对引用。
窦房结成为心脏正常起搏点是因为
王某,男,25岁,发现阴囊肿大,不痛,透光实验阳性,超声显示:睾丸附着鞘膜囊的一侧,睾丸三面均为无回声区包绕,它最可能是:
设待估土地面积为1000m2,每平方米征地费150元、开发费180元,土地开发期为两年,开发费在开发期内均匀投入,开发商要求的回报率为10%,当地土地出让增值收益为12%,银行贷款利率为6%,试用成本法评估土地价格。
在总结某知名企业集团破产的过程中,人们发现如下情况:资料一:为了满足公司大规模扩张的需要、把资金从上市公司转移出来,集团采取以上市公司存款为大股东贷款担保的方式“套钱”。在难以得到上市公司过半数董事同意的情况下,集团制造虚假的上市公司董事会决议:一
下列选项中,不属于行政复议基本制度的是()。
先秦诸子百家中,影响最大的自然要数儒、墨、道、法四家。但自秦汉大一统帝国形成之后,它们的命运开始分化:儒家成了中华文化的正统和主流;法家虽在舆论上不大受好评,但实际上主宰了两千年来专制朝廷的庙堂政治;与法家相反,道家则占据了民间社会的广阔天地,成为幽人隐士
庖丁解牛,游刃有余;揠苗助长,苗枯田荒。这给我们的启示是:
苹果公司的嵌入式移动电子产品风靡全球,iOS操作系统也随之为大众所熟悉。根据iOS的发展历史,它的前身是()。
A、Ithasnothingtodowithhighermathscore.B、Itworksinsomesubjects,butnotinothers.C、Itleadstohigherscoresinso
最新回复
(
0
)