首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关. α4能否由α1,α2,α3线性表示?证明你的结论.
设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关. α4能否由α1,α2,α3线性表示?证明你的结论.
admin
2019-04-08
44
问题
设向量组α
1
,α
2
,α
3
线性相关,向量组α
2
,α
3
,α
4
线性无关.
α
4
能否由α
1
,α
2
,α
3
线性表示?证明你的结论.
选项
答案
不能.α
1
,α
2
,α
3
线性相关,故秩(α
1
,α
2
,α
3
)≤2,而α
2
,α
3
,α
4
线性无关,秩(α
2
,α
3
,α
4
)=3.因而秩(α
1
,α
2
,α
3
,α
4
)≥秩(α
2
,α
3
,α
4
)=3,而秩(α
1
,α
2
,α
3
)≤2,故 秩(α
1
,α
2
,α
3
,α
4
)>秩(α
1
,α
2
,α
3
), 即 秩(α
1
,α
2
,α
3
,α
4
)=秩(α
1
,α
2
,α
3
)+1,因而α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://jikaoti.com/ti/LnoRFFFM
0
考研数学一
相关试题推荐
设α1,α2,α3均为三维向量,则对任意的常数k,l,向量α1+kα3,α2+lα3线性无关是向量组α1,α2,α3线性无关的()
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设矩阵的特征方程有一个二重根,求a的值,并讨论A是否可相似对角化。
已知方程组无解,则a=______。
如图1.3-1所示,设曲线方程为,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
(2018年)设L为球面x2+y2+z2=1与平面x+y+z=0的交线,则
(2002年)(1)验证函数满足微分方程y"+y’+y=ex(2)利用(1)的结果求幂级数的和函数.
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…).证明:级数绝对收敛;
[2018年]计算曲线积分∫Lsin2xdx+2(x2一1)ydy,其中L是曲线y=sinx上从点(0,0)到点(π,0)的一段.
随机试题
阴道稀薄的泡沫状分泌物见于
下列哪项不是影响切口裂开的因素A.营养不良B.切口缝合技术有缺点C.剧烈咳嗽D.严重腹胀E.高血压
A.嵌入牙冠内的修复体B.没有覆盖前牙唇面或后牙颊面的部分冠修复体C.以树脂或瓷制作的覆盖牙冠唇颊侧的部分冠D.冠边缘止于牙冠导线处的部分冠修复体E.在唇颊面开窗的锤造冠罩面或贴面()
患儿,8个月,因搐搦急诊。患儿冬季出生,人工喂养;睡眠不安、多汗。近日气温回升,经常户外活动。今日突然出现全身抽搐,约15秒,停止后精神、食欲无异常。患儿最可能发生的情况是
适用普通程序审理的案件,根据《民事诉讼法》的规定,应当在立案之日起()个月内审结。
下列有关借款费用的会计处理说法正确的有()。
“其身正,不令而行,其身不正,虽令不从”这句话体现的德育方法是________。
在某种意义上,网上匿名与我们在现实世界中视为理所当然的一些情况是类似的。驾驶汽车、穿越边境、搭乘飞机时,要求公民携带证件,它虽然构成了对我们的自由的一种侵犯,但因为这样做减少了真实存在的风险,我们也就乐于接受这些要求。然而,如果要求每个购物者每次进商店时都
Thatwasnotthefirsttimehe______us.Ithinkit’shightimewe______strongactionsagainsthim.
【86】Eachday,50,000shiny,fire-engine-redGalaapplesworkthewaythroughasprawlingfactoryinSwedesboro,N.J.【87】Inside,
最新回复
(
0
)