首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
试就常数k的不同取值,讨论方程xe-x-k=0的实根的个数.
试就常数k的不同取值,讨论方程xe-x-k=0的实根的个数.
admin
2021-02-25
46
问题
试就常数k的不同取值,讨论方程xe
-x
-k=0的实根的个数.
选项
答案
令f(x)=xe
-x
-k,则f’(x)=(1-x)e
-x
. 令f’(x)=0,得唯一驻点x=1. 当x<1时f’(x)>0,当x>1时f’(x)<0,所以f(1)=e
-1
-k是f(x)的最大值,因此 如果e
-1
-k>0,即k<e
-1
时,f(1)>0,且 [*] 从而当0<k<e
-1
时,f(x)=0有两个实根,当k≤0时,f(x)=0有唯一实根; 如果e
-1
-k<0,即k>e
-1
时,f(x)=0无实根; 如果e
-1
-k=0,即k=e
-1
时,f(x)=0有唯一实根.
解析
转载请注明原文地址:https://jikaoti.com/ti/LjARFFFM
0
考研数学二
相关试题推荐
设f(x,y)在点0(0,0)的某邻域U内连续,且常数试讨论f(0,0)是否为f(x,y)的极值?若为极值,是极大值还是极小值?
设二阶常系数线性微分方程y"+ay’+by=cex有特解y=e2x+(1+x)ex,确定常数a,b,c,并求该方程的通解.
设f(x)二阶连续可导,且f(0)=f’(0)=0,f’’(0)≠0,设u(x)为曲线y=f(x)在点(x,f(x))处的切线在x轴上的截距,求
设g(x)在x=0的某邻域内连续,且,又设f(x)在该邻域内存在二阶导数,且满足x2f”(x)-[f’(x)]2=xg(x),则()
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
(1997年试题,六)设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足(a为常数),又曲线y=f(x)与x=1,y=0所围的图形S的面积值为2,求函数y=f(x),并问a取何值时,图形S绕x轴旋转一周所得的旋转体的体积最小。
设A=(aij)3×3是实正交矩阵,且a11=1,b=(1,0,0)T,则线性方程组Ax=b的解是________.
设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1。过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
(1)设x>0,y>0,z>0,求函数f(x,y,z)=xyz3在约束条件x2+y2+z2=5R2(R>0为常数)下的最大值;(2)由(1)的结论证明:当a>0,b>0,c>0时,
随机试题
沈振新是下列哪部小说中的我军高级指挥员形象()
下列各项不属于病人权利的是
理中丸的组成药物是
德国安全认证标志的英文缩写是()
办理证券柜台委托时,委托柜台应严格按照价格优先的原则,依次为客户办理委托业务,不得漏报或插报。()
以下各项中属于所有权继受取得方式的是()。
甲、乙、丙、丁四人坐在一张方桌的四面,每人头戴一顶帽子。帽子的颜色为:蓝色或青色。他们都能看到别人的帽子,但看不到自己的帽子,丁问:“你们每人看到了什么颜色的帽子?”甲说:“我看到了三顶青色的帽子。”乙说:“我看到了一顶蓝色的帽子和两顶青色的帽子。”丙说;
函数f(x,y)=在点(0,0)处().
A、 B、 C、 D、 C
Mostgrowingplantscontainmuchmorewaterthanallothermaterialscombined.C.R.Darneshassuggestedthatitisaspropert
最新回复
(
0
)