首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b=a1+a2+a3+a4,求方程Ax=b的通解.
设矩阵A=(a1,a2,a3,a4),其中a2,a3,a4线性无关,a1=2a2—a3,向量b=a1+a2+a3+a4,求方程Ax=b的通解.
admin
2021-02-25
17
问题
设矩阵A=(a
1
,a
2
,a
3
,a
4
),其中a
2
,a
3
,a
4
线性无关,a
1
=2a
2
—a
3
,向量b=a
1
+a
2
+a
3
+a
4
,求方程Ax=b的通解.
选项
答案
方法一:因为a
1
=2a
2
一a
3
,则a
1
,a
2
,a
3
线性相关,从而可得a
1
,a
2
,a
3
,a
4
线性相关,而a
2
,a
3
,a
4
线性无关,所以R(A)=3,从而可得方程Ax=0的基础解系中解向量个数为1,由a
1
=2a
2
—a
3
可得O=a
1
—2a
2
+a
3
=(a
1
,a
2
,a
3
,a
4
)[*] 所以x=(1,一2,1,0)
T
是Ax=0的一基础解系. 又因为b=a
1
+a
2
+a
3
+a
4
=(a
1
,a
2
,a
3
,a
4
)[*],所以(1,1,1,1)
T
是Ax=b的一个特解.所以方程Ax=b的通解为x=k[*],k∈R. 方法二:令x=(x
1
,x
2
,x
3
,x
4
)
T
是方程Ax=b的解,即有x
1
a
1
+x
2
a
2
+x
3
a
3
+x
4
a
4
=b.所以 x
1
(2a
2
一a
3
)+x
2
a
2
+x
3
a
3
+x
4
a
4
=a
1
+a
2
+a
3
+a
4
, 即(2x
1
+x
2
)a
2
+(x
3
一x
1
)a
3
+x
4
a
4
=2a
2
一a
3
+a
2
+a
3
+a
4
, 即(2x
1
+x
2
—3)a
2
+(一x
1
+x
3
)a
3
+(x
4
—1)a
4
=0. 因为a
2
,a
3
,a
4
线性无关,从而有[*] 解方程组可得[*],k∈R,即为Ax=b的通解.
解析
转载请注明原文地址:https://jikaoti.com/ti/LRARFFFM
0
考研数学二
相关试题推荐
已知矩阵A与B相似,其中。求a,b的值及矩阵P,使P—1AP=B。
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设A为n阶可逆矩阵,A*为A的伴随矩阵,证明:(A*)T=(AT)*。
设A是3阶矩阵,特征值为1,一1,一2,则下列矩阵中可逆的是
若三阶方阵,试求秩(A).
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且试证:(Ⅰ)存在,使f(η)=η;(Ⅱ)对任意实数λ,必存在ξ∈(0,η),使得f′(ξ)一λ[f(ξ)一ξ]=1.
(1998年)已知α1=[1,4,0,2]T,α2=[2,7,1,3]T,α3=[0,1,-1,a]T,β=[3,10,6,4]T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由α1,α2,α3
若3阶非零方阵B的每一列都是方程组的解,则λ=______,|B|=_______.
设A,B均为n阶方阵,|A|=2,|B|=一3,则|A-1B*一A*B-1|=_______.
随机试题
(2005年)投资项目W的净现金流量如下:则项目W的静态投资回收期为()年。
某声源的最大几何尺寸为2m,则在不同方向上,均符合点声源几何发散衰减公式计算要求的最小距离是()。
《焦化行业准入条件》规定:新建和改扩建机焦炉炭化室高度必须达到4.3m以上(含4.3m),年生产能力( )万吨及以上。
某工业企业2018年不含税销售收入为2000万元,当年实际发生广告费支出360万元,2019年取得不含税销售收入1900万元,出租房屋取得不含税收入200万元,转让商标所有权取得收入220万元;当年实际发生广告费支出200万元。则该企业在计算2019年
根据反垄断民事诉讼的相关规定,下列选项中正确的有()。
孙老师把没有按时完成作业的学生赶到操场上,让他们在冷风中把作业写完,说要让学生明白学习的艰辛。这说明,孙老师没有做到()。
根据所给资料,回答问题。2004~2010年,我国计算机信息产业国内市场销售额增长最快的一年是()。
几位同学参加了计算机考试。如果甲的得分提高17分,则他们的平均分数就达到92分;如果甲的得分降低3分,则他们的平均分就只有88分。那么,这些同学共有()人。
欧洲建筑以神庙和教堂为主,还有公共建筑、城堡、府邸、宫殿和园林。在长期发展过程中表现出风格激荡的多样面貌,新潮迭起,风格屡迁,虽代有继承仍表现出明显的断裂性,大致说来有古希腊、古罗马、拜占庭与俄罗斯、基督教早期、前哥特(罗马风)与哥特、文艺复兴、巴洛克、古
生物燃料指由有机活体或有机活体新陈代谢的产物组成或萃取的固体、液体或气体燃料。根据上述定义,下列不属于生物燃料的是:
最新回复
(
0
)