首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________。
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________。
admin
2018-05-25
36
问题
若二阶常系数线性齐次微分方程y"+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y"+ay’+by=x满足条件y(0)=2,y’(0)=0的解为y=___________。
选项
答案
由齐次微分方程y"+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
可知λ=1是特征方程λ
2
+aλ+b=0的重根,从而可得a=一2,b=1。则原齐次微分方程为y"一2y’+y=x。 设特解y
*
=Ax+B,则(y
*
)’=A,(y
*
)"=0。分别将其代入原微分方程,有一2A+Ax+B=x,比较x的系数知,A=1。于是有一2+B=0,即B=2。所以特解y
*
=x+2。 故非齐次微分方程的通解y=(C
1
+C
2
x)e
x
+x+2,将y(0)=2,y’(0)=0代入,得C
1
=0,C
2
=一1。 因此满足条件的解y=一xe
x
+x+2x(1一e
x
)+2。
解析
转载请注明原文地址:https://jikaoti.com/ti/LO2RFFFM
0
考研数学一
相关试题推荐
设X1,X2,…,Xn为来自正态总体N(μ0,σ2)的简单随机样本,其中μ0已知,σ2>0未知.和S2分别表示样本均值和样本方差.求参数σ2的最大似然估计
在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于的概率为_______.
已知,求a,b的值.
设,X是2阶方阵.(Ⅰ)求满足Ax一XA=0的所有X;(Ⅱ)方程Ax一XA=E,其中E是2阶单位矩阵,问方程是否有解.若有解,求满足方程的所有X,若无解,说明理由.
微分方程满足初始条件的特解是________.
设点M(ξ,η,ζ)是椭球面上第一象限中的点,S是该椭球面在点M处的切平面被三个坐标面所截得的三角形的上侧.求点(ξ,η,ζ)使曲面积分为最小,并求此最小值.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A属于λ=6的特征向量,求矩阵A.
设A=(1)计算行列式|A|(2)当实数a为何值时,方程组Aχ=β有无穷多解,并求其通解.
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设函数f(x),g(x)在x=x0有连续的二阶导数且f(x0)=g(x0),f′(x0)=g′(x0),f″(x0)=g″(x0)≠0,说明这一事实的几何意义.
随机试题
行政组织横向分工的必要性包括()。
关于补体的描述,下列不正确的是
首先应考虑的诊断是为明确诊断,首先应选下列哪项辅助检查
对建设、监理单位施工现场综合考评的内容是()。
下列租赁合同的说法中,正确的有()。
唐山市某陶瓷生产企业是增值税一般纳税人,2014年企业自行计算的会计利润总额如下表所示:2015年初,该企业聘请税务师对企业2014年度纳税情况进行审核,发现如下情况:(1)“销售费用”中有广告费和业务宣传费350万元;销售部门人员工资奖金及办公费用1
关于版画,下列说法不正确的是()。
A、 B、 C、 D、 D
建设生态文明,是关系人民福祉、关乎民族未来的长远大计。面对资源约束趋紧、环境污染严重、生态系统退化的严峻形势,必须树立正确的生态文明概念是()
NewwordsentertheEnglishlanguageallthetime.InfactEnglishhasalwaysbeeninastateof【B1】______andinrecentyearsmo
最新回复
(
0
)