首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,—2)T,则方程组Ax=b的通解x=( )
设矩阵A是秩为2的四阶矩阵,又α1,α2,α3是线性方程组Ax=b的解,且α1+α2—α3=(2,0,—5,4)T,α2+2α3=(3,12,3,3)T,α3—2α1=(2,4,1,—2)T,则方程组Ax=b的通解x=( )
admin
2019-03-23
41
问题
设矩阵A是秩为2的四阶矩阵,又α
1
,α
2
,α
3
是线性方程组Ax=b的解,且α
1
+α
2
—α
3
=(2,0,—5,4)
T
,α
2
+2α
3
=(3,12,3,3)
T
,α
3
—2α
1
=(2,4,1,—2)
T
,则方程组Ax=b的通解x=( )
选项
A、
B、
C、
D、
答案
A
解析
由于n—R(A)=4—2=2,由非齐次线性方程组解的结构可知,方程组Ax=b的通解形式应为α+k
1
η
1
+k
2
η
2
,故可排除C、D。
由已知条件,
(α
2
+2α
3
)=b,A(α
3
—2α
1
)= —b,所以A项中(1,4,1,1)
T
和B项中(—2,—4,—1,2)
T
都是方程组Ax=b的解。
A项和B项中均有(2,2,—2,1)
T
,因此可知它必是Ax=0的解。
又由于3(α
1
+α
2
—α
3
)—(α
2
+2α
3
)=3(α
1
—α
3
)+2(α
2
—α
3
),且由非齐次线性方程组的解与对应齐次线性方程组的解之间的关系知,3(α
1
—α
3
)+2(α
2
—α
3
)是Ax=0的解,所以(3,—12,—18,9)
T
是Ax=0的解,那么(1,—4,—6,3)
T
也是Ax=0的解,故选A。
转载请注明原文地址:https://jikaoti.com/ti/LKLRFFFM
0
考研数学二
相关试题推荐
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
已知齐次方程组同解,求a,b,c.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
设A是m阶正定矩阵,B是m×n实矩阵,证明:BTAB正定r(B)=n.
证明:r(A)=r(ATA).
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在η∈(0,2),使f(n)=f(0);
随机试题
患者,女,37岁。突然心跳、呼吸停止送入医院,急行胸外心脏按压、气管插管、人工呼吸。此时抢救用药的最佳途径为()
在横断层面上,子宫底与子宫体的分界标志是
A.风寒湿痹,外感风寒,喘咳B.风寒湿痹,外感风寒,胸痹C.风寒湿痹,外感风寒,破伤风D.风寒湿痹,外感风寒,鼻渊E.风寒湿痹,外感风寒,上半身疼痛
A.圣愈汤和血安胶囊B.女金丸C.全鹿丸D.逐瘀止崩汤E.内补丸崩漏之肝肾不足证当选用的方剂为()。
反映药物安全性的性能是()。
某宗国有建设用地使用权法定出让最高年限为50年,出让合同约定的使用年限为40年,甲使用10年后转让乙,乙取得该建设用地使用年限为()年。
原始凭证金额有错误的可由出具单位重开,或在原始凭证上更正。()
光荣公司对外币业务选用业务发生时的市场汇率折算,并按月结算汇兑损益。20×7年11月20日公司进口原材料一批,价款总额为100万美元,市场汇率为1:7.46,货款于12月10日支付。11月30日,市场汇率为1:7.48。12月10日公司从银行购入美元10
下列有关无形资产会计处理的表述中,正确的有()。
算法的基本特征是可行性、确定性、________和拥有足够的情报。
最新回复
(
0
)