首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量. (1)求a; (2)求A的特征向量; (3)求可逆矩阵P,使得P-1AP为对角阵.
设A=有三个线性无关的特征向量. (1)求a; (2)求A的特征向量; (3)求可逆矩阵P,使得P-1AP为对角阵.
admin
2018-11-11
27
问题
设A=
有三个线性无关的特征向量.
(1)求a;
(2)求A的特征向量;
(3)求可逆矩阵P,使得P
-1
AP为对角阵.
选项
答案
(1)由|λE-A|=[*]=(λ+2)(λ-1)
2
=0得矩阵A的特征值为 λ
1
=-2,λ
2
=λ
3
=1, 因为A有三个线性无关的特征向量,所以A可以相似对角化,从而r(E-A)=1, 由E-A=[*]得a=-1. (2)将λ=-2代入(λE-A)X=0,即(2E+A)X=0, 由2E+A=[*]得 λ=-2对应的线性无关的特征向量为α
1
=[*]: 将λ=1代入(2E-A)X=0,即(E-A)X=0, 由E-A=[*]得 λ=1对应的线性无关的特征向量为 [*] (3)令P=[*],则P
-1
AP=[*]
解析
转载请注明原文地址:https://jikaoti.com/ti/LGWRFFFM
0
考研数学二
相关试题推荐
设4维向量空间V的两个基分别为(I)α1,α2,α3,α4;(Ⅱ)β1=α1+α2+α3,β2=α2+α3,β3=α3+α4,β4=α4,求由基(Ⅱ)到基(I)的过渡矩阵;
设函数f(x)=如果f"(0)存在,求常数a,b.
设某种元件使用寿命(单位:小时)服从参数为λ的指数分布,其平均使用寿命为40小时,在使用中当一个元件损坏后立即更换另一个新的元件,如此继续下去.已知每个元件的进价为a元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用(假定一年按
(1)验证函数(一∞<x<+∞)满足微分方程y”+y’+y=ex;(2)利用(1)的结果求幂级数的和函数.
求幂级数的收敛域和和函数.
设矩阵有一个特征值是3,求y,并求可逆矩阵P,使(AP)T(AP)为对角矩阵.
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设η1,…,ηs是非齐次线性方程组Ax=b的s个解,k1,…,ks为实数,满足k1+k2+…+ks=1.证明x=k1η1+k2η2+…+ksηs也是该方程组的解.
(2005年)设函数f(χ)连续,且f(0)≠0,求极限
已知函数f(x)连续,且=2,设φ(x)=∫01f(xt)dt,求φ’(x),并讨论φ’(x)的连续性.
随机试题
机械通气的并发症包括:()、()、()、()。
下列关于低钾血症临床表现的描述错误的是
高档X线管的阳极热容量为
银行履约保函通常为合同金额的()%左右。
乙股份有限公司(简称乙公司)为增值税一般纳税人(该企业购进固定资产相关的增值税额不能抵扣),公司的注册资本总额为100万元,适用的增值税税率为17%。2015年1月至4月发生的有关经济业务如下:(1)收到A企业投入的新设备一台,设备价值15万元,
(2016年)下列关于利润分配及未分配利润的会计处理中,错误的是()。
简述学习策略训练的原则。
心理健康表现为个人具有生命的活力,积极的内心体验和良好的()。
给定函数f(x)=ax2+bx+c,其中a,b,c为常数,求:fˊ(x),f(0),fˊ(1/2),fˊ(-b/2a).
SupposeyourfriendMike’sfatherpassedawayyesterday.Mikeisindeepsorrow.Writehimanemailto1)comforthim,and2)
最新回复
(
0
)