设A是n阶矩阵,证明: (Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT; (Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.

admin2014-11-26  43

问题 设A是n阶矩阵,证明:
(Ⅰ)r(A)=1的充分必要条件是存在n阶非零列向量α,β,使得A=αβT
(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.

选项

答案(Ⅰ)若r(A)=1,则A为非零矩阵且A的任意两行成比例,即A=[*] 于是[*] 显然α,β都不是零向量且A=αβT. 反之,若A=αβT,其中α,β都是n维非零列向量,则r(A)=r(αβT)≤r(α)=1.又因为α,β为非零列向量,所以A为非零矩阵,从而r(A)≥1,于是r(A)=1. (Ⅱ)因为r(A)=1,所以存在非零列向量α,β,使得A=αβT,显然tr(A)=(α,β),因为tr(A)≠0,所以(α,β)=k≠0.令AX=λX,因为A2=kA,所以λ2X=kλX,或(λ2一kλ)X=0,注意到x≠0,所以矩阵A的特征值为λ=0或λ=k.因为λ12+…+λn=tr(A)=k,所以λ1=k,λ23=…=λn=0,由r(OE—A)=r(A)=1,得A一定可以对角化.

解析
转载请注明原文地址:https://jikaoti.com/ti/L3cRFFFM
0

最新回复(0)