首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有旋转抛物面S:z=(χ2,y2)与平面П:2χ+2y+z+6=0,P0(χ0,y0,z0)是S上与平面П距离最近的点. (Ⅰ)求点P0及S与П的最短距离; (Ⅱ)、求S存P0、点的法线.并证明它与平面П垂直.
设有旋转抛物面S:z=(χ2,y2)与平面П:2χ+2y+z+6=0,P0(χ0,y0,z0)是S上与平面П距离最近的点. (Ⅰ)求点P0及S与П的最短距离; (Ⅱ)、求S存P0、点的法线.并证明它与平面П垂直.
admin
2018-06-12
24
问题
设有旋转抛物面S:z=
(χ
2
,y
2
)与平面П:2χ+2y+z+6=0,P
0
(χ
0
,y
0
,z
0
)是S上与平面П距离最近的点.
(Ⅰ)求点P
0
及S与П的最短距离;
(Ⅱ)、求S存P
0
、点的法线.并证明它与平面П垂直.
选项
答案
(Ⅰ)化为求解条件最值问题.设P(χ,y,z)为S上[*]点,P到П的距离 d=[*]|2χ+2y+z+6|. 求d存条件χ
2
+y
2
-2z=0下的最小值[*]求9d
2
=(2χ+2y+z+6)
2
在条件χ
2
+y
2
-2z=0下的最小值.用拉格朗日乘子法,令 F(χ,y,z,λ)=(2χ+2y+z+6)
2
+λ(χ
2
+y
2
-2z), 解方程组[*]=4(2χ+2y+z+6)+2λχ=0, ① [*]=4(2χ+2y+z+6)+2λy=0, ② [*]=2(2χ+2y+z+6)-2A=0, ③ [*]=χ
2
+y
2
-2z=0. ④ 由①,②,当λ≠0时得χ=y,代入②,③,④得 [*] 进一步解得 [*] 于是得χ=y=-2,z=4. 另λ=0时,对应[*]显然无解. 因此得唯一驻点P
0
(-2,-2,4).由于实际问题存在最小值,该P
0
点就是S上与П距离最近的点.P
0
点到П的距离d=[*]|2.(-2)+2.(-2)+4+6|=[*]. 就是旋转抛物面S到平面П的最短距离. (Ⅱ)旋转抛物面S:χ
2
+y
2
-2z=0上[*]点(χ,y,z)处的法向量为(2χ,2y,-2),S在点P
0
处的法向量η
1
=-2(2,2,1),П的法向量露η
2
=(2,2,1),η
1
∥η
2
因此S在P
0
的法线[*]与П垂直.
解析
转载请注明原文地址:https://jikaoti.com/ti/Km2RFFFM
0
考研数学一
相关试题推荐
设则满足AB=A,其中B≠E的所有的B=________.
设n维向量α1,α2,α3满足α1一2α2+3α3=0,对任意的n维向量β,向量组α1+αβ,α2+bβ,α3线性相关,则参数a,b应满足条件()
设n元齐次线性方程组Aχ=0的系数矩阵A的秩为r,则Aχ=0有非零解的充分必要条件是()
下列条件不能保证n阶实对称阵A为正定的是()
设在一个空间直角坐标系中,有3张平面的方程:P1:χ+2y+3z=3;P2:2χ一2y+2az=0;P3:χ-ay+z=b.已知它们两两相交于3条互相平行的不同直线,求a,b应该满足的条件.
设1≤a<b,函数f(χ)=χln2χ,求证f(χ)满足不等式(Ⅰ)0<f〞(χ)<2(χ>1).(Ⅱ)f(a)+f(b)-2f(b-a)2.
若f(-1,0)为函数f(χ,y)=e-χ(aχ+b-y2)的极大值,则常数a,b应满足的条件是
已知三元二次型χTAχ的平方项系数都为0,α=(1,2,-1)T满足Aα=2α.①求χTAχ的表达式.②求作正交变换χ=Qy,把χTAχ化为标准二次型.
设随机变量X的概率密度为f(χ)=记事件A={X≤1},对X进行4次独立观测,到第四次事件A刚好出现两次的概率就为q,则q=_______.
某厂生产某种产品,正常生产时,该产品的某项指标服从正态分布N(50,3.82),在生产过程中为检验机器生产是否正常,随机抽取50件产品,其平均指标为=51.26(设生产过程中方差不改变),在显著性水平为α=0.05下,检验生产过程是否正常.
随机试题
将出版物配发给下游售货商的方式称为()。
A.支气管扩张B.肺脓肿C.慢性支气管炎伴发肺气肿D.肺癌E.支气管哮喘
下列疾病中,以昆虫作为传播媒介的是()。
某有限责任公司在成立前由出资人共同推荐董事候选人,在审查各候选人情况时,发现其中有些人不能担任董事,他们是()。
下列不属于客户财务信息的是()。
国际重复纳税的根本原因是()。
研究表明,学习的熟练程度达到()%,记忆效果最好。
如果概念B所表达的对象均在概念A所表达的范围之内;概念A所表达的对象有些在概念B所表达的范围之内,有些不在概念B所表达的范围之内,则称概念A与概念B之间存在真包含关系。根据上述定义,下列哪项中加点的两个概念是真包含关系?()
中国历史上一次前所未有的启蒙运动和空前深刻的思想解放运动是()
A、Calmdownandmakepeace.B、Improvetheirpromotionplans.C、Stopnegotiatingforthetimebeing.D、Reflectontheirrespectiv
最新回复
(
0
)