首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 已知函数y=y(x)满足微分方程x2+y2y′=1一y′,且y(2)=0.求y=y(x)的极大值与极小值.
[2014年] 已知函数y=y(x)满足微分方程x2+y2y′=1一y′,且y(2)=0.求y=y(x)的极大值与极小值.
admin
2021-01-19
65
问题
[2014年] 已知函数y=y(x)满足微分方程x
2
+y
2
y′=1一y′,且y(2)=0.求y=y(x)的极大值与极小值.
选项
答案
先求出y′的表达式,令其等于0,求出驻点;再用一阶导数判别法或用二阶导数判别法找出极值点.为求出极值点需先求出函数的表达式. 由所给方程易求得y′=[*]令y′=0,得到y=y(x)的驻点x=±1,下用一阶导数判别法找出y(x)的极值点,事实上,当x<一1时,y′<0;当一1<x<1时,y′>0;当x>1时,y′<0.由此知道x=一1为y=y(x)的极小值点,x=1为y=y(x)的极大值点. 为求出y=y(x)的极值,需先求出y=y(x)的表达式. 由所给方程得到(1+y
2
)dy=(1一x
2
)dx,两边积分得到y+[*]y
3
=x一[*]x
3
+C. 由y(2)=0得C=[*],从而 y+[*] ① 将x=1代入式①得到 y(1)+[*] 可观察看出y(1)=1.将x=一1代入式①得到 y(一1)+[*]=0. 可观察看出y(一1)=0.因而y=y(x)的极小值为y(一1)=0,极大值为y(1)=1.
解析
转载请注明原文地址:https://jikaoti.com/ti/KfARFFFM
0
考研数学二
相关试题推荐
求函数f(x)=(2一t)e一tdt的最大值和最小值.
[*]
(06年)试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3)其中o(x3)是当x→0时比x3高阶的无穷小.
[2013年]设奇函数f(x)在[-1,1]上具有二阶导数,且f(1)=1,证明:存在ξ∈(0,1),使得f′(∈)=1;
比较定积分的大小.
某工厂生产两种产品,总成本函数为C=Q12+2Q1Q2+Q22+5,两种产品的需求函数分别为Q1=26-P1,Q2=10-1/4P2,试问当两种产品的产量分别为多少时,该工厂麸得最大利润,并求出最大利润.
设已知线性方程组Ax=b存在两个不同的解。求方程组Ax=b的通解。
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
计算累次积分:I=∫01dx∫1x+1ydy+∫12dx∫xx+1ydy+∫23dx∫x3ydy.
若二次型f(x1,x2,x3)=x12+4x22+4x32+2λx1x2一2x1x3+4x2x3为正定二次型,则λ的取值范围是________.
随机试题
化脓性脑膜炎治疗中,哪项错误
胃食管反流病的治疗措施包括
风心病患者近来低热,有助于诊断风湿活动的体征是
某建设项目由于涉及深基坑工程,总包单位依法分包给专业工程公司,对于编制专项施工方案,下列说法中正确的是()。
超额存款准备金与实际存款准备金之间的数量关系为()。
根据波特的五力模型,可能对蜀豆园生产的绿豆糕构成替代威胁的是()。
真理是绝对的,也是相对的。()
风水在古代其实包含有很深的科学成分,“依山而建,傍水而居”、“面南背北,坐北朝南”几千年流传下来,若非其有着极强的______价值,到今天也不至于被建筑商和民间如此______。填入划横线处最恰当的一项是()。
InSeptember,morethanadozenwhalesbeachedthemselvesintheCanaryIslands.Rescuerstriedtowaterdownthewhalesandkee
ImaginebeingaslaveinancientRome.Nowrememberbeingone.Thesecondtask,unlikethefirst,iscrazy.If,asI’mguessing,
最新回复
(
0
)