首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
设f(x)在[a,b]可导,且f’+(a)与f’-(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
admin
2019-02-20
22
问题
设f(x)在[a,b]可导,且f’
+
(a)与f’
-
(b)反号,证明:存在ξ∈(n,b)使f’(ξ)=0.
选项
答案
【证法一】 由极限的不等式性质和题设知,存在δ>0使得a+δ<b-δ,且 [*] 于是 f(a+δ)>f(a),f(b-δ)>f(b). 这表明f(x)在[a,b]上的最大值必在(a,b)内某点取到,即存在ξ∈(a,b)使得[*]由费马定理知f’(ξ)=0. 【证法二】 f(x)在[a,b]必有最大值.若最大值在x=a(或x=b)取到,由最值点处的导数性质知,f’
+
(a)≤0(f’
-
(b)≥0),这与已知矛盾.因此f(x)在[a,b]的最大值不能在x=a及x=b取到,即[*]ξ∈(a,b)使得[*]是f(x)的极值点,f’(ξ)=0.
解析
因f(x)在[a,b]上可导,因而必连续,故存在最大值和最小值.如能证明最大值或最小值在(a,b)内取得,那么这些点的导数值必为零,从而证明了命题.注意,由于题设条件中未假设f’(x)连续,所以不能用连续函数的介值定理来证明.证明时不妨设f’
+
(a)>0且f’
-
(b)<0.
转载请注明原文地址:https://jikaoti.com/ti/JmBRFFFM
0
考研数学三
相关试题推荐
已知二次型f(x1,x2,x3)=xTAx经正交变换x=Qy化为标准形f=3y12—6y22—6y32,其中矩阵Q的第1列是α1=()T.求二次型f(x1,x2,x3)的表达式.
设A、B是n阶方阵,E+AB可逆.(1)验证E+BA也可逆,且(E+BA)—1=E—B(E+AB)—1A.(2)设P=xiyi=1,利用(1)证明P可逆,并求P—1.
设某商品的最大需求量为1200件,该商品的需求函数Q=Q(p),需求弹性η=(η>0),p为单价(万元).(1)求需求函数的表达式;(2)求p=100厅元时的边际收益,并说明其经济意义.
设随机变量X的绝对值不大于1,P{X=一1)=.在事件{一1<X<1}出现的条件下,X在(—1,1)内任一子区间上取值的条件概率与该子区间的长度成正比.试求:(1)X的分布函数F(x)=P{X≤x};(2)X取负值的概率p.
设f(x)为连续函数,满足=f(x),则f(x)=__________.
设函数f(x)的一个原函数为,则∫x2f(1一x3)dx=__________.
设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且则u(x,y)的()
两曲线y=与y=ax2+b在点(2,)处相切,则()
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
随机试题
A、Functionalarchitecture.B、Urbanplanning.C、Trendsinurbandesign.D、Federalregulationsforurbandevelopment.D
社区护理评价方法中,要求社区护士具备良好的亲和力、较好的谈话技能与技巧的是【】
Whenhe________thedoor,hefoundhiskeyswerenowhere.
狂犬病全病程一般不超过()
具有叔氨基的药物是具有R-O-R结构的全身麻醉药是
制备香连丸时,每100g药粉应加
根据《公司法》的规定,下列选项中,属于一人有限责任公司和其他有限责任公司不同之处的有()。
资产负债表中“存货”项目的金额,应根据()科目的余额分析填列。
Extraordinarycreativeactivityhasbeencharacterizedasrevolutionary,flyinginthefaceofwhatisestablishedandproducing
Ingeneral,children’sholophrasticsentencesbegin______.
最新回复
(
0
)