首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=,求A的特征值与特征向量,并指出A可以相似对角化的条件.
已知A=,求A的特征值与特征向量,并指出A可以相似对角化的条件.
admin
2017-07-26
33
问题
已知A=
,求A的特征值与特征向量,并指出A可以相似对角化的条件.
选项
答案
由矩阵A的特征多项式 |λE一A|=[*]=(λ+a一1)(λ—a)(λ—a一1), 得A的特征值是λ
1
=1一a,λ
2
=a, λ
3
=a+1. 由(λ
1
E—A)x=0,得属于λ
1
=1一a的特征向量是 α
1
=(1,0,1)
T
. 由(λ
2
E—A)x=0,得属于λ
2
=a的特征向量是 α
2
=(1,1一2a,1)
T
, 由(λ
3
E一A)x=0,得属于λ
3
=a+1的特征向量是 α
3
=(2一a,一4a,a+2)
T
. 如果λ
1
,λ
2
,λ
3
互不相同,即1一a≠a,1一a≠a+1,a≠a+1, 即a≠[*]且a≠0,则矩阵A有3个不同的特征值.A可以相似对角化. 若a=[*],此时A只有一个线性无关的特征向量,故A不能相似对角化. 若a=0,即λ
1
=λ
3
=1,此时A只有一个线性无关的特征向量,故A不能相似对角化.
解析
转载请注明原文地址:https://jikaoti.com/ti/XVSRFFFM
0
考研数学三
相关试题推荐
设n阶矩阵A与B等价,则必有().
设A为n阶非奇异矩阵,a是n维列向量,b为常数,P=(Ⅰ)计算PQ;(Ⅱ)证明PQ可逆的充分必要条件是aTA-1a≠b.
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
已知非齐次线性方程组x1+x2+x3+x4=-1;4x1+3x2+5x3-x4=-1;ax1+x2+3x3+bx4=-1;有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0使得AB=0,则
二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3的规范形为().
设A是m×n阶矩阵,下列命题正确的是().
已知线性方程Ax=β的增广矩阵可化为且方程组有无穷多解,则参数A的取值必须满足().
向量组a1,a2,…,as线性无关的充分条件是().
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
随机试题
易与内伤发热混淆的证候有
患者,男,28岁。右眼被石灰烧伤。后期治疗原则是
A.肺泡毛细血管急性损伤B.支气管肺感染和阻塞C.肺弥散功能障碍D.肺动脉高压E.肺性脑病肺心病发病的主要机制是
【背景资料】A机电安装工程公司承包了一座大型氨制冷站全部机电安装工程和液氨储罐的制作安装任务。部分管道布置在室内高8m的位置。氨制冷站内氨的高压部分的工作压力为1.6MPa,低压部分的工作压力为0.2MPa。氨气有毒,有强烈的刺激气味。合同规定,施工单位
施工承包合同履约担保的有效期始于()之日。
下列各项中,税务机关有权核定纳税人应纳税额的情形有()。
下列各项中不属于ETF相关信息披露义务人应遵守的业务规则有()
下列关于贷记卡的说法中,错误的是()。
李某为一有限合伙企业中的有限合伙人,李某的下列行为中,不符合合伙企业法律制度规定的是()。
社会保障制度是保持社会稳定的社会安全制度。()
最新回复
(
0
)