首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=一1必是矩阵A与B的特征值. 若AB=BA=0,α与β分别是A与B属于特征值λ=一1的特征向量,证明:向量组α,β线性无关.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=一1必是矩阵A与B的特征值. 若AB=BA=0,α与β分别是A与B属于特征值λ=一1的特征向量,证明:向量组α,β线性无关.
admin
2017-07-26
38
问题
A,B均为n阶非零矩阵,且A
2
+A=0,B
2
+B=0,证明:λ=一1必是矩阵A与B的特征值.
若AB=BA=0,α与β分别是A与B属于特征值λ=一1的特征向量,证明:向量组α,β线性无关.
选项
答案
因为(E+A)A=0,A≠0,知齐次方程组(E+A)x=0有非零解,即行列式|E+A|=0.所以λ=一1必是矩阵A的特征值.同理,λ=一1也必是矩阵B的特征值. 类似地,由AB=0,B≠0,知行列式|A|=0,所以λ0必是矩阵A的特征值,同理,λ=0也必是矩阵B的特征值. 对于Aα=一α,用矩阵B左乘等式的两端有BAα=一Bα,又因为BA=0,故Bα=0=0α. 即α是矩阵B属于特征值λ=0的特征向量. 那么,α与β是矩阵B的不同特征值的特征向量,因而α,β线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/eVSRFFFM
0
考研数学三
相关试题推荐
设A,B是二随机事件;随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立.
设n阶矩阵A与B等价,则必有().
设A为3阶矩阵,α。,α为A的分别属于特征值-1,1的特征向量,向量α满足Aα3=α2+α3,(I)证明α1,α2,α3线性无关;(Ⅱ)令P=(α11,α2,α3),求P-1AP.
证明:方程x=a+bsinx(其中a>0,b>0)至少有一个正根,并且它不超过a+b.
已知A是3阶矩阵,A*是A的伴随矩阵,如果矩阵A的特征值是1,2,3,那么矩阵(A*)*的最大特征值是__________.
设A为n阶矩阵,对于齐次线性方程(I)An=0和(Ⅱ)An+1x=0,则必有
假设测量的随机误差X~N(0,102),试求在100次独立重复测量中,至少有三次测量误差的绝对值大于19.6的概率a,并用泊松分布求出a的近似值(小数点后取两位有效数字).[附表]
设y(x)为微分方程y’’-4y’+4y=0满足初始条件y(0)=0,y’(0)=2的特解,则∫01y(x)dx=__________.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
随机试题
某公司2008年12月31日部分总账及其所属明细账余额如下表:要求:根据上述资料计算填列资产负债表中的空白项目。
小说的“三要素”的内涵是什么?请结合中外著名小说实例说明。
《季氏将伐颛臾》选自()
Researchsuggeststhattherearetypicallytwodifferentleadershiprolesthatareheldbydifferentindividuals.
急性白血病易继发感染的直接原因是( )
8个月女婴。突发高热39.8℃,抽搐一次急诊就医。查体:精神可,神清,身上有少许皮疹,前囟平。咽部充血,扁桃体Ⅱ度肿大,心、肺、腹(-),无病理反射。下列与诊断无关的表现是
基金市场营销主要是指开放式基金的市场营销,其涉及的内容包括()。
甲商业银行M支行为增值税一般纳税人,主要提供相关金融服务。2017年第四季度,提供贷款服务,取得含增值税利息收入6491.44万元;提供票据贴现服务,取得含增值税利息收入874.5万元。假设暂无其他业务,甲商业银行第四季度的销项税额为416.94万元。(
国务院有权()。
汉代对选拔任用官吏有身份的限制,据此,下列各选项能够成立的是
最新回复
(
0
)