设A,B为n阶矩阵,下列命题成立的是( ).

admin2019-08-26  34

问题 设A,B为n阶矩阵,下列命题成立的是(    ).

选项 A、A与B均不可逆的充要条件是AB不可逆
B、R(A)﹤n与R(B)﹤n均成立的充要条件是R(AB)﹤n
C、Ax=0与Bx=0同解的充要条件是A与B等价
D、A与B相似的充要条件是E—A与E—B相似

答案D

解析 【思路探索】通过举反例排除(A)、(B)、(C).
解:(A)与(B)类似,故均错误,而(C)仅是必要而非充分条件,故应选(D).
事实上,若A~B,则由相似矩阵的性质知E—A~E—B;
反之,若E—A~E—B,则E—(E—A)~E—(E—B),即A~B.
对于选项(A),若A与B均不可逆,则| A |—| B|=0,从而|AB |—| A | | B|=0,即AB不可逆,但若AB不可逆,推出A与B均不可逆,如A=E,B=,则AB=B不可逆,但A可逆.
对于选项(B),与选项(A)相近,由于R(AB)≤min{R(A),R(B)},故若R(A)B=,则R(AB)=R(B)=1<2,但R(A)=2.
对于选项(C),由同型矩阵A与B等价?R(A)=R(B)可知,若Ax=0与Bx=0同解,则A与B等价;但反之不然,如,则A,B等价,但Ax=0与Bx=0显然不同解.
故应选(D).
转载请注明原文地址:https://jikaoti.com/ti/J9nRFFFM
0

最新回复(0)