首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A-E)及行列式|A+2E|.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3. (1)证明β,Aβ,A2β线性无关; (2)若A3β=Aβ,求秩r(A-E)及行列式|A+2E|.
admin
2018-09-25
33
问题
设A为3阶矩阵,λ
1
,λ
2
,λ
3
是A的三个不同特征值,对应的特征向量为α
1
,α
2
,α
3
,令β=α
1
+α
2
+α
3
.
(1)证明β,Aβ,A
2
β线性无关;
(2)若A
3
β=Aβ,求秩r(A-E)及行列式|A+2E|.
选项
答案
(1)设 k
1
β+k
2
Aβ+k
3
A
2
β=0, 由题设有Aα
i
=λ
i
α
i
(i=1,2,3),于是 Aβ=Aα
1
+Aα
2
+Aα
3
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, A
2
β=λ
1
2
α
1
+λ
2
2
α
2
+λ
3
2
α
3
, 代入(*)式整理得 (k
1
+k
2
λ
1
+k
3
λ
1
2
)α
1
+(k
1
+k
2
λ
2
+k
3
λ
2
2
)α
2
+(k
1
+k
2
λ
3
+k
3
λ
3
2
)α
3
=0. 因为α
1
,α
2
,α
3
是三个不同特征值对应的特征向量,必线性无关,于是有 [*] 其系数行列式 [*] 必有k
1
=k
2
=k
3
=0,故β,Aβ,A
2
β线性无关. (2)由A
3
β=Aβ有 A[β,Aβ,A
2
β]=[Aβ,A
2
β,A
3
β]=[Aβ,A
2
β,Aβ]=[β,Aβ,A
2
β] [*] 令P=[β,Aβ,A
2
β],则P可逆,且 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/Ip2RFFFM
0
考研数学一
相关试题推荐
设f(x)是连续函数,并满足∫f(x)sinxdx=cos2x+C;又F(x)是f(x)的原函数,且满足F(0)=0,则F(x)=___________.
计算行列式D4=之值.
设A是n阶矩阵,且|A|=0,则
求区域Ω的体积,其中Ω是由曲面z=y2(y≥0),z=4y2(y≥0),z=z,z=2x,z=4所围成.
求下列三重积分:(Ⅰ)I=dV,其中Ω是球体x2+y2+z2≤R2(h>R);(Ⅱ)I=ze(x+y)2dV,其中Ω:1≤x+y≤2,x≥0,y≥0,0≤z≤3;(Ⅲ)I=(x3+y3+z3)dV,其中Ω由半球面x2+y2+z2=2z(z≥1)与锥面
设齐次线性方程组的系数矩阵记为A,Mj(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果Mj不全为0,则(M1,一M2,…,(一1)n-1Mn)T.是该方程组的基础解系.
级数().
设随机变量X在区间(0,1)上服从均匀分布,当X取到x(0<x<1)时,随机变量Y等可能地在(x,1)上取值。试求:(Ⅰ)(X,Y)的联合概率密度;(Ⅱ)关于Y的边缘概率密度函数;(Ⅲ)P{X+Y>1}。
设求.
设求y’.
随机试题
下列关于证据的说法正确的是:()
为避免土地登记代理活中产生纠纷,降低土地登记代理风险,应注意做好的工作不包括()。
关于工程分包的说法,正确的有()。
下列不属于检疫传染病的有( )。
根据企业国有资产法律制度的规定,下列关于国有独资企业的表述中,正确的是()。
由细颗粒物造成的灰霾天气对人体健康的危害甚至要比沙尘暴更大。粒径10微米以上的颗粒物,会被挡在人的鼻子外面;粒径在2.5微米至10微米之间的颗粒物,能够进入上呼吸道,但部分可通过痰液等排出体外,另外也会被鼻腔内部的绒毛阻挡.对人体健康危害相对较小;而粒径在
竞争与合作的关系是()
证明:,其中a﹥0为常数。
无符号数A减去无符号数B,结果的进位标志为1表明(56)。
A.whereB.exceptionsC.affairsD.meetE.cracksonF.cracksupG.reachH.acclaimedI.seekforJ.failK.tiesL.
最新回复
(
0
)