首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组 的系数矩阵记为A,Mj(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果Mj不全为0,则(M1,一M2,…,(一1)n-1Mn)T.是该方程组的基础解系.
设齐次线性方程组 的系数矩阵记为A,Mj(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果Mj不全为0,则(M1,一M2,…,(一1)n-1Mn)T.是该方程组的基础解系.
admin
2016-10-27
33
问题
设齐次线性方程组
的系数矩阵记为A,M
j
(j=1,2,…,n)是矩阵A中划去第j列所得到的行列式,证明:如果M
j
不全为0,则(M
1
,一M
2
,…,(一1)
n-1
M
n
)
T
.是该方程组的基础解系.
选项
答案
因为A是(n一1)×n矩阵,若M
j
不全为0,即A中有n—1阶子式非零,故r(A)=n一1.那么齐次方程组Ax=0的基础解系由n—r(A)=1个非零向量所构成. [*] 按第一行展开,有D
i
=a
i1
M
1
一a
i2
M
2
+…+a
in
(一1)
1+n
M
n
. 又因D
i
中第一行与第i+1行相同,知D
i
=0.因而 a
i1
M
1
一a
i2
M
2
+…+a
in
(一1)
n-1
M
n
=0. 即(M
1
,一M
2
,…,(一1)
n-1
M
n
)
T
满足第i个方程(i=1,2,…,n一1),从而它是Ax=0的非零解,也就是Ax=0的基础解系.
解析
转载请注明原文地址:https://jikaoti.com/ti/mxwRFFFM
0
考研数学一
相关试题推荐
已知某产品的边际成本和边际收益函数分别为Cˊ(q)=q2-4q+6,Rˊ(q)=105—2q,固定成本为100,其中q为销售量,C(q)为总成本,R(q)为总收益,求最大利润.
设y=ex,求dy和d2y:(1)x为自变量;(2)x=x(t),t为自变量,x(t)二阶可导.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
将函数f(x)=ln(1-x-2x2)展开成x的幂级数,并指出其收敛区间.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
如下图,连续函数y=f(x)在区间[-3,-2]、[2,3]上图形分别是直径为1的上、下半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的上、下半圆周,设F(x)=∫0xf(t)dt,则下列结论正确的是().
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:,P点的坐标为.
(2009年)计算曲面积分其中∑是曲面2x2+2y2+z2=4的外侧。
随机试题
洗胃时应使患者头稍低并_______。
网络营销对传统营销中的定价策略的影响包括()
A.单发或多发粉红色、蒂细长、似水草在水中漂浮B.膀胱表面黏膜上有突起的红色区域,外观与充血和增生的黏膜相似C.暗红色有浸润的团块状结节,呈暗红色,短蒂,表面覆有灰白色坏死组织,肿物活动性小D.无蒂的、境界不清的褐色团块,坏死处呈溃疡,边缘形成水肿,
A.红细胞管型B.白细胞管型C.上皮细胞管型D.透明管型E.蜡样管型主要见于肾盂肾炎的管型是
下列说法正确的有()。
某住宅小区共有1400个业主,其中800个业主的住宅为小户型,总建筑面积为4万平方米且每户建筑面积相等;600个业主的住宅为大户型,总建筑面积为6万平方米且每户建筑面积相等。小区第二次业主大会会议决定,不再续聘原物业管理公司,而选聘新的物业管理公司。该
()对于家具相当于花岗岩对于()
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
下列关于法学在我国历史上的发展,错误的是
从项目“学生管理.pjx”连编应用程序“学生管理系统”应使用的命令是()。
最新回复
(
0
)