首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
利用代换将方程y”cos x-2y’sin x﹢3ycos x﹦ex化简,并求出原方程的通解。
利用代换将方程y”cos x-2y’sin x﹢3ycos x﹦ex化简,并求出原方程的通解。
admin
2019-01-22
23
问题
利用代换
将方程y
”
cos x-2y
’
sin x﹢3ycos x﹦e
x
化简,并求出原方程的通解。
选项
答案
方法一:由[*],得 y
’
﹦u
’
sec x﹢usec xtan x, y
”
﹦u
”
sec x﹢2u
’
sec xtan x﹢usec xtan
2
x﹢usec
3
x, 代入原方程y
”
cos x-2y
’
sin x﹢3ycos x﹦e
x
,得 U
”
﹢4u﹦e
x
。 (1) 先求其对应的齐次线性微分方程的通解。由于其特征方程为λ
2
2﹢4﹦0,则特征方程的根为λ﹦±2i。所以通解为[*](x)﹦C
1
cos 2x﹢C
1
sin 2x,其中C
1
,C
2
为任意常数。 再求非齐次线性微分方程的特解。设其特解为u
*
(x)﹦Ae
x
,代入(1)式,得 (Ae
x
)
”
﹢4(Ae
x
)﹦Ae
x
﹢4Ae
x
﹦e
x
, 则A﹦[*],因此u
*
(x)﹦[*]e
x
。所以(1)式的通解为 u(x)﹦C
1
cos 2x﹢C
2
sin 2x﹢[*]e
x
, 其中C
1
,C
2
为任意常数。 因此,原方程的通解为 [*] 方法二:由y﹦[*]得u﹦ycos x,于是 u
’
﹦y
’
cos x-ysinx, u
”
﹦y
”
cos x-2y
’
sin x-ycos x, 于是原方程y
”
cos x-2y
’
sin x﹢3ycos x﹦e
x
化为u
”
﹢4u﹦e
x
(以下求解过程同方法一)。 本题考查二阶非齐次线性微分方程的求解。考生在求解微分方程之前,应该先根据题目给出的代换将微分方程化简。二阶非齐次线性微分方程的通解包含两部分:对应二阶齐次线性微分方程的通解和二阶非齐次线性微分方程的特解。
解析
转载请注明原文地址:https://jikaoti.com/ti/Gl1RFFFM
0
考研数学一
相关试题推荐
证明极限不存在.
证明(α,β,γ)2≤α2β2γ2,并且等号成立的充要条件是α,β,γ两两垂直或者α,β,γ中有零向量.
AB=0,A,B是两个非零矩阵,则
设(I)和(Ⅱ)是两个四元齐次线性方程组,(I)为(Ⅱ)有一个基础解系(0,1,1,0)T,(一1,2,2,1)T.求(I)和(Ⅱ)的全部公共解.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
设线性方程组为(1)讨论a1,a2,a3,a4取值对解的情况的影响.(2)设a1=a3=k,a2=a4=一k(k≠0),并且(一1,1,1)T和(1,1,一1)T都是解,求此方程组的通解.
已知随机变量X与Y的相关系数则根据切比雪夫不等式有估计式P{|X—Y|≥≤_______.
将一颗骰子重复投掷n次,随机变量X表示出现点数小于3的次数,y表示出现点数不小于3的次数.求3X+y与X一3y的相关系数.
设n阶方阵A、B可交换,即AB=BA,且A有n个互不相同的特征值.证明:(1)A的特征向量都是B的特征向量;(2)B相似于对角矩阵.
设直线L:绕y轴旋转一周所成的旋转曲面为∑.设Ω为均匀的几何体,求该几何体的质心.
随机试题
某市A区张某与谢某在B区共同违反了《治安管理处罚法》的相关规定,B区公安分局辖区内某派出所对谢某处以500元罚款,把张某已送到B区公安分局处理,B区公安分局对张某处以拘留15日的处罚。请回答以下问题:若张某在规定期间,既不缴纳罚款,也未申请复议和提起诉
超级链接的载体通常是_______、_______。
女性,25岁,结婚2年,未孕,闭经4个月,泌乳,体重较前增加。为进一步检查,以下最有意义的是
化脓性颌骨骨髓炎的主要致病菌是
归经理论对临证用药的帮助是
编制审计工作底稿时,应当注意的问题有()。
金属熔炼的目的有()。
2005年我国滨海旅游业继续保持强劲的增长态势,全年滨海旅游收入5052亿元;增加值2031亿元,比上年增长32.4%。全国滨海国内旅游收人3887亿元,比上年增加1391亿元。海洋交通运输业继续保持良好的发展态势,2005年营运收入达2940亿元,占全国
已有函数fun(a,b),为了使函数指针变量p指向函数fun,则使用的赋值语句是_____________。
Musiccomesinmanyforms;mostcountrieshaveastyleoftheirown.【C1】______themmofthecenturywhenjazzwasborn,America
最新回复
(
0
)