首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
利用代换将方程y”cos x-2y’sin x﹢3ycos x﹦ex化简,并求出原方程的通解。
利用代换将方程y”cos x-2y’sin x﹢3ycos x﹦ex化简,并求出原方程的通解。
admin
2019-01-22
21
问题
利用代换
将方程y
”
cos x-2y
’
sin x﹢3ycos x﹦e
x
化简,并求出原方程的通解。
选项
答案
方法一:由[*],得 y
’
﹦u
’
sec x﹢usec xtan x, y
”
﹦u
”
sec x﹢2u
’
sec xtan x﹢usec xtan
2
x﹢usec
3
x, 代入原方程y
”
cos x-2y
’
sin x﹢3ycos x﹦e
x
,得 U
”
﹢4u﹦e
x
。 (1) 先求其对应的齐次线性微分方程的通解。由于其特征方程为λ
2
2﹢4﹦0,则特征方程的根为λ﹦±2i。所以通解为[*](x)﹦C
1
cos 2x﹢C
1
sin 2x,其中C
1
,C
2
为任意常数。 再求非齐次线性微分方程的特解。设其特解为u
*
(x)﹦Ae
x
,代入(1)式,得 (Ae
x
)
”
﹢4(Ae
x
)﹦Ae
x
﹢4Ae
x
﹦e
x
, 则A﹦[*],因此u
*
(x)﹦[*]e
x
。所以(1)式的通解为 u(x)﹦C
1
cos 2x﹢C
2
sin 2x﹢[*]e
x
, 其中C
1
,C
2
为任意常数。 因此,原方程的通解为 [*] 方法二:由y﹦[*]得u﹦ycos x,于是 u
’
﹦y
’
cos x-ysinx, u
”
﹦y
”
cos x-2y
’
sin x-ycos x, 于是原方程y
”
cos x-2y
’
sin x﹢3ycos x﹦e
x
化为u
”
﹢4u﹦e
x
(以下求解过程同方法一)。 本题考查二阶非齐次线性微分方程的求解。考生在求解微分方程之前,应该先根据题目给出的代换将微分方程化简。二阶非齐次线性微分方程的通解包含两部分:对应二阶齐次线性微分方程的通解和二阶非齐次线性微分方程的特解。
解析
转载请注明原文地址:https://jikaoti.com/ti/Gl1RFFFM
0
考研数学一
相关试题推荐
在空间坐标系的原点处,有一单位正电荷,设另一单位负电荷在椭圆z=x2+y2,x+y+z=1上移动,问两电荷间的引力何时最大,何时最小?
设z(x,y)满足求z(x,y).
已知平面曲线Ax2+2Bxy+Cy2=1(C>0,AC—B2>0)为中心在原点的椭圆,求它的面积.
AB=0,A,B是两个非零矩阵,则
已知齐次方程组(I)解都满足方程x1+x2+x3=0,求a和方程组的通解.
设随机变量X的概率密度为f(x)=试求:(I)常数C;(Ⅱ)概率;(Ⅲ)X的分布函数.
(I)设X与Y相互独立,且X~N(5,15),Y—χ2(5),求概率P{X一5>};(Ⅱ)设总体X~N(2.5,62),X1,X2,X3,X4,X5是来自X的简单随机样本,求概率P{(1.3<<3.5)∩(6.3<S2<9.6)}.
求Pdx+Qdy在指定区域D上的原函数,其中{P,Q}=,D={y)|x>0}.
求下列平面上曲线积分,其中是沿椭圆正向从A(a,0)到(0,b)的一段弧,a≠1.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
随机试题
关于职业健康安全管理体系标准实施特点的说法,错误的是()。
无需当事人事先约定而依法可以直接采用的担保方式为()。A.保证B.抵押C.质押D.留置
万华滑雪器材厂与某区城市合作银行之间签订的房屋抵押合同,可否以口头的方式签订?为什么?万华滑雪器材厂与某区城市合作银行之间签订的该房屋抵押合同,是否必须进行抵押登记?为什么?
金融市场是金融商品和金融工具交易的场所。()
由测量所得到的赋予被测量的值称为()。[2007年真题]
整个小学阶段儿童自我评价发展的总趋势是()。
对犯罪分子依法定罪量刑时,做到分清主次、区别对待、主要是依据犯罪分子的()。
对不作为不法侵害行为的防卫。
ItwasabeautifulsummerdayandIwastakingawalkinthedowntownareaofMadrid.WhenIturnedastreet【C1】______Ihea
WhenIwasachild,myteethusedto【B1】______inseveraldifferentdirections,and【B2】______thatinvolvedratherexpensive【B3】_
最新回复
(
0
)