首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
设非齐次方程组AX=β有解ξ1,ξ2,ξ3,其中ξ1=(1,2,3,4)T,ξ2+ξ3=(0,1,2,3)T,r(A)=3.求通解.
admin
2017-08-07
20
问题
设非齐次方程组AX=β有解ξ
1
,ξ
2
,ξ
3
,其中ξ
1
=(1,2,3,4)
T
,ξ
2
+ξ
3
=(0,1,2,3)
T
,r(A)=3.求通解.
选项
答案
ξ
1
是AX=β的一个特解,只用再找AX=0的基础解系.从解是4维向量知,AX=β的未知数个数n=4.r(A)=3,于是,它的AX=0的基础解系由1个非零解构成. 由解的性质,2ξ
1
一(ξ
2
+ξ
3
)=(2,3,4,5)
T
是AX=0的解.于是,AX=β的通解为 (1,2,3,4)
T
+c(2,3,4,5)
T
,c可取任何常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/MeVRFFFM
0
考研数学一
相关试题推荐
设矩阵A=已知线性方程组AX=β有解但不唯一,试求:(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
已知4阶方阵A=(a1,a2,a3,a4),a1,a2,a3,a4均为4维列向量,其a2,a3,a4线性无关,a1=2a1-a3,如果β=a1+a2+a3+a4,求线性方程组Ax=β的通解.
设周期函数f(x,y)在(-∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线的斜率为().
设总体X的概率密度为f(x,θ)=,而X1,X2…,Xn是来自总体X的简单随机样本,则未知参数θ的矩估计量为_________.
(2000年试题,十一)某试验性生成线每年一月份进行熟练工与非熟练工的人数统计,然后将六分之一的熟练工支援其他生产部门.其缺额由招收新的非熟练工补齐.新、老非熟练工经过培训及实践至年终考核有五分之二成为熟练丁,没第n年一月份统计的熟练工和非熟练工所占百分比
(1997年试题,八)A是n阶可逆方阵,将A的第i行和第j行对换后得到的矩阵记为B.求AB-1.
设f(x,y),φ(x,y)均有连续偏导数,点M0(x0,y0)是函数z=f(x,y)在条件φ(x,y)=0下的极值点,又φ’(x0,y0)≠0,求证:曲面z=f(x,y)与柱面φ(x,y)=0的交线F在点P0(z0,y0,z0)(z0=f(x0,y0
历史上科学家皮尔逊进行抛掷一枚匀称硬币的试验,他当时掷了12000次,正面出现6019次.现在我们若重复他的试验,试求:要想使我们试验正面出现的频率与概率之差的绝对值不超过皮尔逊试验偏差的概率小于20%,现在我们应最多试验多少次?
设A是n阶正定矩阵,x是n维列向量,E是n阶单位阵,记写出二次型f=|W|的矩阵表达式,并讨论f的正定性.
随机试题
氯霉素与林可霉素、红霉素都作用于细菌核糖体50S亚基上。
人体肌肉力量除了和肌肉体积大小有关,还与神经调节有关。()
Everymorning,kidsfromalocalhighschoolareworkinghard.Theyaremakingandsellingspecialcoffeeatacoffeecafe.They
下列选项中属于环境影响评价方法的是()。
财务杠杆作用的大小通常用( )表示。
从支出的角度来看,私人购买住房的支出,包含在()之中。(2011年)
乙将蜂箱寄存于甲院内,甲未拴住毛驴,毛驴踢倒了乙的蜂箱,蜂群蜇死毛驴,蜂群也大量死亡,甲、乙争执不下,诉至法院。此案()。
①而最为严重的影响,将是地球上数以万计的人被迫离开家园②人类正面临着全球变暖的挑战③热带流行的疟疾和寄生虫病将向北蔓延,使欧洲出现流行病④森林消失和沙漠扩大,将使非洲成为受影响最广的地区⑤另外,一些河流水量将大大减少甚至干涸,台风也将频频来袭⑥致
Whatisthemainpurposeoftheresearch?WhatdoesthemandoonFridays?
NewEducationalTechnology:ChallengesandPotentialI.Thecriticismofcomputersandmultimediatechnology—A(1)_____ofunders
最新回复
(
0
)