(2008年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3. (Ⅰ)证明α1,α2,α3线性无关; (Ⅱ)令P=[α1,α2,α3],求P-1AP.

admin2019-04-17  69

问题 (2008年)设A为3阶矩阵,α1,α2为A的分别属于特征值-1,1的特征向量,向量α3满足Aα3=α2+α3
    (Ⅰ)证明α1,α2,α3线性无关;
    (Ⅱ)令P=[α1,α2,α3],求P-1AP.

选项

答案(Ⅰ)设存在一组常数k1,k2,k3,使得 k1α1+k2α2+k3α3=0 ① 用A左乘①式两端,并利用Aα1=-α1,Aα2=α2, -k1α1(k2+k32+k3α3=0 ② ①一②,得 2k1α1-k3α2=0 ③ 因为α1,α2是A的属于不同特征值的特征向量,所以α1,α2线性无关,从而由③式知k1=k3=0,代入①式得k2α2=0,又由于α2≠0,所以k2=0,故α1,α2,α3线性无关. (Ⅱ)由题设条件可得 AP=A[α1,α2,α3]=[Aα1,Aα2,Aα3] =[-α1,α2,α2+α3] =[α1,α2,α3][*] 由(Ⅰ)知矩阵P可逆,用P-1左乘上式两端,得 [*]

解析
转载请注明原文地址:https://jikaoti.com/ti/FnLRFFFM
0

最新回复(0)