①设α1,α2,…,αs和β1,β2,…βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt). ②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B). ③设A和B是两个

admin2017-07-10  41

问题 ①设α1,α2,…,αs和β1,β2,…βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).
②设A和B是两个行数相同的矩阵,r(A|B)≤r(A)+r(B).
③设A和B是两个列数相同的矩阵,表示A在上,B在下构造的矩阵.证明

选项

答案这是3个互相等价的命题:①是②的向量形式;③是②的转置形式.因此对其中之一的证明就完成了这3个命题的证明. 证明①.取{α1,α2,…,αs,β1,β2,…,βt}的一个最大无关组(Ⅰ),记(Ⅰ) 1是(Ⅰ)中属于α1,α2,…,αs中的那些向量所构成的部分组,(Ⅰ) 2是(Ⅰ)中其余向量所构成的部分组.于是(Ⅰ) 1和(Ⅰ) 2分别是属于α1,α2,…,αs和β1,β2,…,βt的无关部分组,因此它们包含向量个数分别不超过r(α1,α2,…,αs)和r(β1,β2,…,βt).从而 r(α1,α2,…,αs,β1,β2,…,βt)=(Ⅰ)中向量个数 =(Ⅰ) 1中向量个数+(Ⅰ) 2中向量个数 ≤r(α1,α2,…,αs)+r(β1,β2,…,βt).

解析
转载请注明原文地址:https://jikaoti.com/ti/LuzRFFFM
0

最新回复(0)