首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基。
设B是秩为2的5×4矩阵,α1=(1,1,2,3)T,α2=(-1,1,4,-1)T,α3=(5,-1,-8,9)T是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基。
admin
2017-01-14
36
问题
设B是秩为2的5×4矩阵,α
1
=(1,1,2,3)
T
,α
2
=(-1,1,4,-1)
T
,α
3
=(5,-1,-8,9)
T
是齐次线性方程组Bx=0的解向量,求Bx=0的解空间的一个标准正交基。
选项
答案
因为r(B)=2,所以解空间的维数是4-r(B)=4-2=2。 又因α
1
,α
2
线性无关,所以α
1
,α
2
是解空间的一组基,将其正交化,令 β
1
=α
1
=(1,1,2,3)
T
, [*] 再将其单位化,令 [*] 则η
1
,η
2
为所求的一个标准正交基。
解析
转载请注明原文地址:https://jikaoti.com/ti/FfwRFFFM
0
考研数学一
相关试题推荐
A、 B、 C、 D、 C
一张贴现债券(贴现债券是指期中不付息,期末还本付息的债券)承诺到期还本付息共偿还1025元.由于负债方可能违约,债权人承担可能得不到承诺支付的风险,因而这一债券是一个风险资产.根据金融理论,市场对风险资产的定价将使得其期望收益率等于具有同类风险的资产的期
证明:f(x)=x3+px2+qx+r(p,q,r为常数)至少有一个零值点.
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
当a取下列哪个值时,函数,(x)=2x3-9x2+12x-a恰有两个不同的零点.
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:t为何值时,向量组α1,α2,α3线性无关?
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)nxm中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2…,xn)=(I)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)
设A,B为同阶方阵,(Ⅰ)如果A,B相似,试证A,B的特征多项式相等.(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立.(Ⅲ)当A,B均实对称矩阵时,试证(Ⅰ)的逆命题成立.
设矩阵A=已知线性方程组AX=β有解但不唯一,试求:(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
(2011年试题,三)(I)证明:对任意的正整数n,都有成立;(Ⅱ)设.证明数列{an}收敛.
随机试题
黄疸伴右上腹部阵发性绞痛见于哪种疾病
A.传染源、传播途径、易感人群B.微生物、媒介、宿主C.病原体、人体和它们所处的环境D.病原体、环境、宿主E.病原体的数量、致病力、特异性定位构成传染过程必须具备的三个因素是
下列不属于比较法的形式的是()。
关于围挡(墙)叙述正确的有()。
关于税收立法的说法,正确的是()。(2010年真题)
衢州烂柯山有朱熹亲笔丹书的“兜率台”三字摩崖。()
对互联网企业来讲,从用户那里收集到的信息主要包括消费习惯、行为特征、个人数据等,企业可以通过收集这些信息去开展大数据分析,进一步挖掘用户的潜在消费能力和更_______的价值,从而为用户提供更具_______的服务。填入画横线部分最恰当的一项是:
某机关工作人员王青峰看中了同事李小强的一套房屋,遂向李小强表示:我要购买你这套房屋,若不同意,我将检举你收受贿赂的行为。李小强“做贼心虚”,无奈将该房屋以较低价格卖给了王青峰。请问以下关于该买卖合同说法中正确的是()
WholesalepricesinJulyrosemoresharplythanexpectedandatafasterratethanconsumerprices,【C1】______thatbusinesseswer
Whatdoesthewomanmainlytalkabout?
最新回复
(
0
)