首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知二次型 f(x1,x2,x3)=4x22-3x32+4x1x2—4x1x3+8x2x3. 用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
已知二次型 f(x1,x2,x3)=4x22-3x32+4x1x2—4x1x3+8x2x3. 用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
admin
2018-09-25
19
问题
已知二次型
f(x
1
,x
2
,x
3
)=4x
2
2
-3x
3
2
+4x
1
x
2
—4x
1
x
3
+8x
2
x
3
.
用正交变换把二次型f化为标准形,并写出相应的正交矩阵.
选项
答案
A的特征多项式|λE-A|=(6+λ)(1-λ)(6-λ),则A的特征值λ
1
=-6,λ
2
=1,λ
3
=6. 经计算可得,λ
1
=-6对应的正交单位化特征向量p
1
= [*] λ
2
=1对应的正交单位化特征向量p
2
= [*] λ
3
=6对应的正交单位化特征向量p
3
= [*] 令正交矩阵P=[p
1
,p
2
,p
3
]= [*] 所求正交变换为 [*] 二次型f的标准形为f=-6y
1
2
+y
2
2
+6y
3
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/Eu2RFFFM
0
考研数学一
相关试题推荐
设某种商品的合格率为90%,某单位要想给100名职工每人一件这种商品.试求:该单位至少购买多少件这种商品才能以97.5%的概率保证每人都可以得到一件合格品?
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设f(x)是区间[-π,π]上的偶函数,且满足证明:f(x)在[-π,π]上的傅里叶级数展开式中系数a2n=0,n=1,2,….
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=a+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
设(Ⅰ)求f′(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f′(x0)是正的还是负的,n为非零整数;(Ⅳ)证明:对δ>0,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
随机试题
在WS平板或HE平板上鼠伤寒沙门菌的典型菌落是
适宜制成混悬型液体药剂的药物有
下面四个所给选项中,左边的图形经折合后会像右沩图形中的()。
下列不属于用益物权的是()。
乙股份有限公司(以下简称乙公司)为上市公司,乙公司发生的有关债券投资业务如下:(1)20×7年1月1日,以516万元的价格购入A公司于同日发行的4年期一次还本、分期付息债券,债券面值总额为500万元,每年1月1日付息,票面年利率为6%,乙公司将其划分
以下不是国家宏观调控手段的选项是()。
体育过程包括_______、运动实践和_______三个阶段。
唐代画马的名家是__________、画牛的名家是__________。
近代警察发端于西欧,是资本主义发展的产物。( )
指令周期是指(43)。
最新回复
(
0
)