首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量: (2)求矩
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=2,α1=(1,-1,1)T是A的属于特征值λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵. (1)验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量: (2)求矩
admin
2016-05-09
28
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=2,α
1
=(1,-1,1)
T
是A的属于特征值λ
1
的一个特征向量,记B=A
5
-4A
3
+E,其中E为3阶单位矩阵.
(1)验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量:
(2)求矩阵B.
选项
答案
(1)由Aα
1
=α
1
得A
2
α
1
=Aα
1
=α
1
,依次递推,则有A
3
α
1
=α
1
,A
5
α
1
=α
1
, 故Bα
1
=(A
5
-4A
3
+E)α
1
=A
5
α
1
-4A
3
α
1
+α
1
=-2α
1
, 即α
1
是矩阵B的属于特征值-2的特征向量. 由关系式B=A
5
-4A
3
+E及A的3个特征值λ
1
=1,λ
2
=2,λ
3
=-2得B的3个特征值为μ
1
=-2,μ
2
=1,μ
3
=1. 设α
2
,α
3
为B的属于μ
2
=μ
3
=1的两个线性无关的特征向量,又由A为对称矩阵,则B也是对称矩阵,因此α
1
与α
2
、α
3
正交,即α
1
T
α
2
=0,α
1
T
α
3
=0. 因此α
2
,α
3
可取为下列齐次线性方程组两个线性无关的解,即 (1,-1,1)[*]=0, 得其基础解系为:[*],故可取[*] 即B的全部特征值的特征向量为:[*],其中k
1
≠0,k
2
,k
3
,不同时为零. [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/EVPRFFFM
0
考研数学一
相关试题推荐
设矩阵A=,则A与B().
设f(x)连续可导,且,又(Ⅰ)若F(x)在x=0处连续,求a;(Ⅱ)求F’(x),并讨论F’(x)在x=0处的连续性.
设y1(χ),y2(χ)是微分方程y〞+py′+qy=0的解,则由y1(χ),y2(χ)能构成方程通解的充分条件是().
已知函数z=u(x,y)eax+by,且,确定常数a和b,使函数z=z(x,y)满足方程,则a=,b=.
设数列{xn}满足xn+1=,0≤x1<3,n=1,2,….证明xn存在,并求此极限.
设a,Aa,A2a线性无关,且3Aa-2A2a-A3a=0,其中A为3阶矩阵,a为3维列向量记P=(a,Aa,A2a),求3阶矩阵B,使得P-1AP-B,并计算行列式|A+E|
设向量=(1,1,﹣1)T是A=的一个特征向量求a,b的值;
设都是线性方程组AX=0的解向量,只要系数矩阵A为().
设A为三阶实对称矩阵,为方组AX=0的解,为方程组(2E-A)X=0的一个解,|E+A|=0,则A=________.
设l为圆周一周,则空间第一型曲线积分x2ds=_________.
随机试题
股三角的境界正确的是()
下列哪一项不是内痔的特点:
下列各项中,不属于为小规模纳税人代开增值税专用发票范围的是()。
Thelawsaysthatwomenshouldhavethechanceofdoingthesamejobsasmenandearnthesameasthem.Therealityisvery
_____________,江枫渔火对愁眠。(唐.张继《枫桥夜泊》)
第一段“看得见的污染不一定是最要命的污染”一句强调的意思是()。文中[]应填入的词语是()。
2005年6月30日至7月7日,国家主席胡锦涛应邀对俄罗斯、哈萨克斯坦进行国事访问,出上海合作组织阿斯坦纳峰会和在英国鹰谷举行的“八国集团与中国、印度、巴西、南非、墨西五国领导人对话会”。这次出访取得的外交成果有
设f(x)在[a,b]上连续c,d∈(a,b),t1>0,t2>0.证明:在[a,b]内必有点ξ,使得t1ff(c)+t2f(d)=(t1+t2)f(ξ)
theinvestorwhoisuncertainaboutthefutureismorelikelytoputmoneyintoblue-chipstocksortreasurybillsthanintogol
WhichofthefollowingunderlinedpartsisINCORRECT?
最新回复
(
0
)