首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
设A=E一ξξT,其中E是n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:当ξTξ=1时,A是不可逆矩阵.
admin
2019-04-08
43
问题
设A=E一ξξ
T
,其中E是n阶单位矩阵,ξ是n维非零列向量,ξ
T
是ξ的转置.证明:当ξ
T
ξ=1时,A是不可逆矩阵.
选项
答案
当ξξ
T
=1时,因为有A
2
=A.如果A可逆,则A
-1
A
2
=A
-1
A,即A=E.这与A≠E矛盾,故A不可逆.
解析
转载请注明原文地址:https://jikaoti.com/ti/DfoRFFFM
0
考研数学一
相关试题推荐
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
设λ为A的特征值.(1)证明:AT与A特征值相等;(2)求A2,A2+2A+3E的特征值;(3)若|A|≠0,求A—1,A*,E—A—1的特征值.
设A与B分别是m,n阶矩阵,证明
(1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)—f(a)=f’(ξ)(b—a).(2)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且=A,则f’(0)存在
已知齐次线性方程组同解,求a,b,c的值.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=O.
假设总体X在非负整数集{0,1,2,…,k)上等可能取值,k为未知参数,x1,x2,…,Xn为来自总体X的简单随机样本值,则k的最大似然估计值为
设n为正整数,F(x)=证明:对于给定的n,F(x)有且仅有一个零(实)点,并且是正的,记该零点为an;
随机试题
酒制蕲蛇的目的包括
影响放射性白内障发生和发展的因素不包括
男性,50岁,有吸烟史,近20天于夜间睡眠时,反复出现心前区疼痛,做24小时动态心电图示:疼痛发作时Ⅱ、Ⅲ、aVF导联ST段上抬,选用下列何药最恰当
细胞水肿时,电镜下的形态改变是
患者外阴瘙痒一周,查阴道黏膜覆以膜状物,擦除后露出红肿黏膜面,需采用何种疗法
下列建筑外墙所采用的装饰材料,不符合相关规范要求的是()。
意志的品质有()。
据工商部门不完全统计,目前我国每年订立的合同约40亿份,但履约率只有50%多一点。这反映出我国市场交易中存在的突出问题是()。
查看报表输出效果可以使用()命令。
Whathappenedinthe1950s?
最新回复
(
0
)