首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
A,B均为n阶非零矩阵,且A2+A=0,B2+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
admin
2018-04-15
32
问题
A,B均为n阶非零矩阵,且A
2
+A=0,B
2
+B=0,证明:λ=-1必是矩阵A与B的特征值.若AB=BA=0,α与β分别是A与B属于特征值λ=-1的特征向量,证明:向量组α,β线性无关.
选项
答案
因为(E+A)A=0,A≠0,知齐次方程组(E+A)x=0有非零解,即行列式|E+A|=0.所以λ=-1必是矩阵A的特征值.同理,λ=-1也必是矩阵B的特征值. 类似地,由AB=0,B≠0,知行列式|A|=0,所以λ=0必是矩阵A的特征值,同理,λ=0也必是矩阵B的特征值. 对于Aα=-α,用矩阵B左乘等式的两端有BAα=-Bα,又因为BA=0,故Bα=0-0α. 即α是矩阵B属于特征值λ=0的特征向量. 那么,α与β是矩阵B的不同特征值的特征向量,因而α,β线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/tjVRFFFM
0
考研数学一
相关试题推荐
设函数f(x)在闭区间[0,1]上可微,对于[0,1]上的每一个x,函数f(x)的值都在开区间(0,1)内,且f’(x)≠1,证明:在(0,1)区间内有且仅有一个x,使得f(x)=x.
设f(x)可导,F(x)=f(x)(1+|sinx|),则f(0)=0是F(x)在x=0处可导的
设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的求导公式.
设总体X的概率密度函数如下,X1,X2,…,Xn为总体X的样本。判断上题中求出的估计量是否为λ的无偏估计量?
设X为随机变量,若矩阵的特征值全为实数的概率为0.5,则()。
以下极限等式(若右端极限存在,则左端极限存在且相等)成立的个数是()
有甲、乙、丙三个盒子,第一个盒子里有4个红球1个白球,第二个盒子里有3个红球2个白球,第三个盒子里有2个红球3个白球,先任取一个盒子,再从中先后取出3个球,以X表示红球数求所取到的红球不少于2个的概率.
设f(x,y)=x2-(y-2)arcsin,则f′x(2,2)=().
将旅店的房租价格从每天75元提高到每天80元,会使出租量从每天100套降到每天90套.(1)求房租为每天75元时的需求价格弹性;(2)求房租分别为每天75元和80元时旅店的总收益;(3)问该旅店是否应该提价?
设某产品的需求函数为Q=Q(p),其对价格P的弹性εP=2,则当需求量为10000件时,价格增加1元会使产品收益增加______元.
随机试题
高速钢车刀粗车时的切削速度应取为()m/min。
超声造影剂的应用领域有哪些
肝硬化腹水患者治疗必须遵循以下原则,但哪项除外
夜间急诊送来一无主无钱危急患者.值班医师应如何处置
关于政府采购邀请招标,下列说法正确的有()。[2013年真题]
大地水准面具有的特点是()。
商业银行管理战略是商业银行前进、发展的指路灯,指引商业银行的前进方向以及如何到达目的地。()
从本质上说,人类文明的进程就是不断脱离动物界的过程,这一过程主要包括人类体质的进化和心性的进化两个方面。从猿到人的体质进化,人类用了上百万年的时间才完成,而人类心性的进化则还要缓慢。当人类跨越石器时代、青铜时代进入铁器时代之后,动物性依然顽强地在人类身上闪
下列对前瞻性培训需求评估模型的说法错误的是()。
《中华人民共和国食品卫生法》的监督执法主体是()。
最新回复
(
0
)