首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(00年)设有n元实二次型 f(χ1,χ2,…,χn)=(χ1+a1χ2)2+(χ2+a2χ3)2+…+(χn-1+an-1χn)+(χn+anχ1)2, 其中a1(i=1,2,…,n)为实数.试问:当a1,a2…,an满足何种条件时,二次
(00年)设有n元实二次型 f(χ1,χ2,…,χn)=(χ1+a1χ2)2+(χ2+a2χ3)2+…+(χn-1+an-1χn)+(χn+anχ1)2, 其中a1(i=1,2,…,n)为实数.试问:当a1,a2…,an满足何种条件时,二次
admin
2017-05-26
42
问题
(00年)设有n元实二次型
f(χ
1
,χ
2
,…,χ
n
)=(χ
1
+a
1
χ
2
)
2
+(χ
2
+a
2
χ
3
)
2
+…+(χ
n-1
+a
n-1
χ
n
)+(χ
n
+a
n
χ
1
)
2
,
其中a
1
(i=1,2,…,n)为实数.试问:当a
1
,a
2
…,a
n
满足何种条件时,二次型f(χ
1
,χ
2
,…,χ
n
)为正定二次型.
选项
答案
由题设条件知,对任意的χ
1
,χ
2
,…,χ
n
,有 f(χ
1
,χ
2
,…,χ
n
)≥0 其中等号成立当且仅当 [*] 方程组(*)仅有零解的充分必要条件是其系数行列式不为零,即 [*] 所以,当1+(-1)
n+1
a
1
a
2
…a
n
≠0时,对于任意的不全为零的χ
1
,χ
2
,…,χ
n
,有f(χ
1
,χ
2
,…,χ
n
)>0,即当a
1
a
2
…,a
n
≠(-1)
n
时,二次型f为正定二次型.
解析
转载请注明原文地址:https://jikaoti.com/ti/CzSRFFFM
0
考研数学三
相关试题推荐
设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y,与V=X一Y,不相关的充分必要条件为().
如果P(AB)=0,则下列结论中成立的是().
设A,B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则().
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×m中元素aij(i,j=1,2,…,n)的代数余子式,二次型f(x1,x2,…,xn)=(Ⅰ)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(x)的
设二次型xTAx=x12+4x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵A满足AB=0,其中求:(A一3E)6.
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
设二次型f(x1,x2,x3)=x12-x22+2ax1x3+4x2x3,的负惯性指数为1,则a的取值范围是__________.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12一y22一y32,又A*α=α,其中α=(1,1,一1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
随机试题
试述国外有关领导素质的观点。
在《声声慢》(寻寻觅觅)中,词人借以自喻的:事物是()
王某所住的街区发生火灾,为了防止火灾漫延到自己家及其邻近的其他住所,王某开推土机把张某的房子推倒以隔离火区。王某的行为是()
男性,62岁,进行性排尿困难,夜尿次数增多,直肠指检发现前列腺明显肿大,应首先考虑为
[2012年第014题,2008年第036题]在有集中空调的大型开敞式办公室室内设计中,下述处理手法哪一项是不恰当的?
银行依法可向法院申请强制执行的法律文书不包括()。[2013年6月真题]
某市公民赵先生为自由职业者,2013年10月取得以下四项收入中,属于劳务报酬所得的是()。
地理教学中使用地球仪做教具体现了()教学原则。
Theteamsselectedtoputuptheirbestinthecompetition,withexcellentcredentialsandevidenceofgenuinecuriosityandcre
TheHealthBenefitsofDrinkingWater—Isbottleddrinkingwaterhealthierthanfiltered
最新回复
(
0
)