首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
admin
2018-11-23
44
问题
讨论p,t为何值时,方程组
无解?有解?有解时写出全部解.
选项
答案
①用初等行变换把增广矩阵化为阶梯形矩阵 [*] 于是,当t≠-2时,有r(A|β)>r(A),此时方程组无解. 当t=-2时(p任意),r(A|β)=r(A)≤3<4,此时有无穷多解. ②当t=-2,p=-8时, [*] 得同解方程组 [*] 令χ
3
=χ
4
=0,得一特解(-1,1,0,0)
T
. 导出组有同解方程组 [*] 对χ
3
,χ
4
赋值得基础解系(4,-2,1,0)
T
,(-1,-2,0,1)
T
.此时全部解为(-1,1,0,0)
T
+c
1
(4,-2,1,0)
T
+c
2
(-1,-2,0,1)
T
,其中c
1
,c
2
可取任何数. ③当t=-2,p≠-8时, [*] 得同解方程组 [*] 令χ
4
=0,得一特解(-1,1,0,,0)
T
. 导出组有同解方程组 [*] 令χ
4
=1,得基础解系(-1,-2,0,1)
T
.此时全部解为(-1,1,0,0)
T
+c(-1,-2,0,1)
T
,其中c可取任何数.
解析
转载请注明原文地址:https://jikaoti.com/ti/BH1RFFFM
0
考研数学一
相关试题推荐
设B是秩为2的5×4矩阵,α1=(1,1,2.3)T,α2=(一1,1,4,一1)T,α3=(5,一1,一8,9)T都是齐次线性方程组BX=0的解向量.求BX=0的解空间的一个标准正交基.
设f(x)连续且关于x=T对称,a
设f(x)连续,F(t)=[z2+f(x2+y2)]dxdydz,其中Ω由不等式0≤z≤h,x2+y2≤t2所确定.试求:
设函数f(x)可导,且f(0)=0,F(x)=∫0xtn-1f(xn一tn)dt,试求
设n阶矩阵A的伴随矩阵A*≠O,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且秩(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解x=
已知随机变量X与Y独立,且X服从[2,4]上的均匀分布,Y~N(2,16).求cov(2X+XY,(Y-1)2).
(97年)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是.设X为途中遇到红灯的次数,求随机变量X的分布律、分布函数和数学期望.
(97年)已知的一个特征向量.(1)试确定参数a、b及特征向量ξ所对应的特征值;(2)问A能否相似于对角阵?说明理由.
设A,B,C是三个相互独立的随机事件,且0<P(C)<1,则在下列给定的四对事件中可能不相互独立的是()
随机试题
当利用S形曲线进行实际进度与计划进度比较时,如果检查日期实际进展点落在计划S形曲线的右侧,则该实际进展点与计划S形曲线的水平距离表示工程项目()。
俗语说“三日不练,手也生”是指桑代克学习规律中的【】
光缆穿管道敷设时,若施工环境较好,一次敷设光缆的长度不超过1000m,一般采用的敷设方法为()。
工程总承包和工程项目管理是( )通行的工程建设项目组织实施方式。
一家公司想要为自己的货物在运输过程中进行投保,请你用专业的知识分析如何投保货物运输保险。
按照《公司法》的规定,股东向公司投入的下列资产中,应当进行评估作价的资产有()。
“增长1%的绝对值”映的是()。
下列关于普通合伙企业事务执行的表述中,符合《合伙企业法》规定的有()
国际上主要的租船方式有()。
语言是人类特有的音义结合的符号系统。构成语言的要素有()、()、()。
最新回复
(
0
)