设三阶矩阵A的特征值是0,1,-1,则下列选项中不正确的是( )

admin2019-05-12  45

问题 设三阶矩阵A的特征值是0,1,-1,则下列选项中不正确的是(    )

选项 A、矩阵A-E是不可逆矩阵。
B、矩阵A+E和对角矩阵相似。
C、矩阵A属于1与-1的特征向量相互正交。
D、方程组Ax=0的基础解系由一个向量构成。

答案C

解析 因为矩阵A的特征值是0,1,-1,所以矩阵A-E的特征值是-1,0,-2。由于λ=0是矩阵A-E的特征值,所以A-E不可逆。
    因为矩阵A+E的特征值是1,2,0,矩阵A+E有三个不同的特征值,所以A+E可以相似对角化。(或由A~+E~A+E而知A+E可相似对角化)。
    由矩阵A有一个特征值等于0可知r(A)=2,所以齐次线性方程组Ax=0的基础解系由n-r(A)=3-2=1个解向量构成。
    选项C的错误在于,若A是实对称矩阵,则不同特征值的特征向量相互正交,而一般n阶矩阵,不同特征值的特征向量仅仅线性无关并不一定正交。
转载请注明原文地址:https://jikaoti.com/ti/AtoRFFFM
0

随机试题
最新回复(0)