首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(96年)已知二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2. (1)求参数c及此二次型对应矩阵的特征值. (2)指出方程f(x1,x2,x3)=1表示何种二次曲面.
(96年)已知二次型f(x1,x2,x3)=5x12+5x22+cx32一2x1x2+6x1x3—6x2x3的秩为2. (1)求参数c及此二次型对应矩阵的特征值. (2)指出方程f(x1,x2,x3)=1表示何种二次曲面.
admin
2019-03-07
41
问题
(96年)已知二次型f(x
1
,x
2
,x
3
)=5x
1
2
+5x
2
2
+cx
3
2
一2x
1
x
2
+6x
1
x
3
—6x
2
x
3
的秩为2.
(1)求参数c及此二次型对应矩阵的特征值.
(2)指出方程f(x
1
,x
2
,x
3
)=1表示何种二次曲面.
选项
答案
(1)f对应的矩阵为 [*] 因其秩r(A)=2,故 [*] 解得c=3,容易验证此时A的秩的确是2. 或由 [*] 可知当且仅当c=3时r(A)=2. 这时 [*] 故所求特征值为λ
1
=0,λ
2
=4,λ
3
=9. (2)由上述特征值可知,f(x
1
,x
2
,x
3
)=1表示椭圆柱面.
解析
转载请注明原文地址:https://jikaoti.com/ti/ASoRFFFM
0
考研数学一
相关试题推荐
设R3的两组基为:α1=(1,1,1)T,α2=(0,1,1)T,α3=(0,0,1)T;β1=(1,0,1)T,β2=(0,1,-1)T,β3=(1,2,O)T,求α1,α2,α3到β1,β2,β3的过渡矩阵C,并求γ=(-1,2,1)T在基β1,β
设向量组(Ⅰ)可以由向量组(Ⅱ)线性表示,且R(Ⅰ)=R(Ⅱ),证明:向量组(Ⅰ)与(Ⅱ)等价。
设向量组α1=(6,λ+1,7)T,α2=(λ,2,2)T,α3=(λ,1,0)T线性相关,则()
已知A,B为3阶矩阵,其中A可逆,满足2A-1B=B-4E。(Ⅰ)证明A-2E可逆;(Ⅱ)如果B=,求矩阵A。
设A=,已知线性方程组Ax=b存在两个不同的解。(Ⅰ)求λ,a;(Ⅱ)求方程组Ax=b的通解。
(1998年)计算其中∑为下半球面的上侧,a为大于零的常数。
(2015年)设函数f(x)在定义域I上的导数大于零,若对任意的x0∈I,由线y=f(x)在点(x0,f(x0))处的切线与直线x=x0及x轴所围成区域的面积恒为4,且f(0)=2,求f(x)的表达式。
(2012年)已知曲线L:其中函数f(t)具有连续导数,且f(0)=0,若曲线L的切线与x轴的交点到切点的距离恒为1,求函数f(t)的表达式,并求以曲线L及x轴和y轴为边界的区域的面积。
已知线性方程组的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组的通解,并说明理由。
飞机以匀速v沿y轴正向飞行,当飞机行至O时被发现,随即从x轴上(x0,0)处发射一枚导弹向飞机飞去(x0>0),若导弹方向始终指向飞机,且速度大小为2v.导弹运行方程.
随机试题
有关简易呼吸器通气法的描述正确的是()
妊娠合并病毒性肝炎的鉴别诊断下述哪项除外:
槟榔肝的镜检变化主要有
典型心绞痛不发生于()
建筑用Ⅴ级钢筋是对Ⅳ级钢筋经过()而成。
污水处理厂选址应考虑哪些因素?对该项目的两个方案从经济、环境方面进行综合比较,哪个方案较好?说明理由。污水处理厂恶臭的来源,恶臭的主要成分及影响恶臭物质排放的因素是什么?
我国法律规定,未成年人就是通常所说的()。
从中国文化产业发展的历史轨迹来看.可以将“十五”“十一五”定位为中国文化产业的起步阶段:“十二五”是中国文化产业快速发展且以培育产业体系、形成产业规模、打造产业园区、整合产业资源、聚合产业资本为重点的发展时期;“十三五”则是中国文化产业进入大数据时代,新兴
Increasingly,overthepasttenyears,people-especiallyyoungpeople-havebecomeawareoftheneedtochangetheireatinghabit
A、Hisabilitytoplaytheorgan.B、Hisinterestinmedicine.C、Hisdoctoraldegreesinphilosophyandmusic.D、Histalentsinpr
最新回复
(
0
)