首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在(a,b)二阶可导,χ1,χ2∈(a,b),χ1≠χ2,t∈(0,1),则 (Ⅰ)若f〞(χ)>0(χ∈(a,b)),有 f[tχ1+(1-t2)χ2]<tf(χ1)+(1-t)f(χ2), (4.6) 特别有
设f(χ)在(a,b)二阶可导,χ1,χ2∈(a,b),χ1≠χ2,t∈(0,1),则 (Ⅰ)若f〞(χ)>0(χ∈(a,b)),有 f[tχ1+(1-t2)χ2]<tf(χ1)+(1-t)f(χ2), (4.6) 特别有
admin
2016-10-21
49
问题
设f(χ)在(a,b)二阶可导,
χ
1
,χ
2
∈(a,b),χ
1
≠χ
2
,
t∈(0,1),则
(Ⅰ)若f〞(χ)>0(
χ∈(a,b)),有
f[tχ
1
+(1-t
2
)χ
2
]<tf(χ
1
)+(1-t)f(χ
2
), (4.6)
特别有
(Ⅱ)若f〞(χ)<0(
χ∈(a,b)),有
f[tχ
1
+(1-t)χ
2
]>tf(χ
1
)+(1-t)f(χ
2
), (4.7)
特别有
选项
答案
(Ⅰ)与(Ⅱ)的证法类似,下面只证(Ⅰ).因f〞(χ)>0(χ∈(a,b))[*]f(χ)在(a,b)为凹的[*](4.5)相应的式子成立.注意tχ
1
+(1-t)χ
2
∈(a,b)[*] f(χ
1
)>[tχ
1
+(1-t)χ
2
]+f′[tχ
1
+(1-t)χ
2
][χ-(tχ
1
+(1-t)χ
2
)] =f[tχ
1
+(1-t)χ
2
]+f′[tχ
1
+(1-t)χ
2
](1-t)(χ
1
-χ
2
), f(χ
2
)>f[tχ
1
+(1-t)χ
2
]+f′[tχ
1
+(1-t)χ
2
][χ
2
-(tχ
1
+(1-t)χ
2
)] =f[tχ
1
+(1-t)χ
2
]-f′[tχ
1
+(1-t)χ
2
]t(χ
1
-χ
2
), 两式分别乘t与(1-t)后相加得 tf(χ
1
)+(1-t)f(χ
2
)>f[tχ
1
+(1-t)χ
2
].
解析
转载请注明原文地址:https://jikaoti.com/ti/ABzRFFFM
0
考研数学二
相关试题推荐
1
2
-1/6
[*]
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an,为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
设在[0,+∞)上函数f(x)有连续导数,且f’(x)≥k>0,f(0)<0,证明:f(x)在(0,+∞)内有且仅有一个零点。
设函数f(u)在(0,+∞)内具有二阶导数,且z=满足等式若f(1)=0,f’(1)=1,求函数f(u)的表达式。
设函数f(u)具有二阶连续导数,而z=f(exsiny)满足方程=e2xz,求f(u).
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
随机试题
低渗性缺水常无______。
交感缩血管纤维分布最密集的部位是
男性,57岁,胸骨后阵发性针刺样疼痛2年,近3个月咽下食物哽噎感而来诊。查体见右锁骨上淋巴结肿大。该患者初步考虑可能为
建设单位在签订施工合同后,应将50%的专项费用拨给施工单位。()
在浅滩整治工程中,护岸丁坝,当其在凹岸时,间距为坝长L的()倍。
下列关于应付账款说法,错误的有()。
与市场组合相比,夏普指数高表明( )。
下列各项中,会引起所有者权益总额发生增减变动的是()。
下列关于公民这一概念的表述,正确的有()(2016年非法学综合课多选第52题)
毛泽东最早论述新民主主义革命基本思想的文章是()
最新回复
(
0
)