首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
admin
2022-09-23
27
问题
设f(x)在[a,b]上连续,任取x
i
∈[a,b](i=1,2,…,n),任取k
i
>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)=(k
1
+k
2
+…+k
n
)f(ξ).
选项
答案
因为f(x)在[a,b]上连续,所以f(x)在[a,b]上取到最小值m和最大值M,显然有m≤f(x
i
)≤M(i=1,2,…,n),注意到k
i
>0(i=1,2,…,n),所以有k
i
m≤k
i
f(x
i
)≤k
i
M(i=1,2,…,n),同向不等式相加,得(k
1
+k
2
+…+k
n
)m≤k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)≤(k
1
+k
2
+…+k
n
)M,即m≤[k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)]/(k
1
+k
2
+…+k
n
)≤M,由介值定理,存在ξ∈[a,b],使得f(ξ)=[k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)]/(k
1
+k
2
+…+k
n
),即[k
1
f(x
1
)+k
2
f(x
2
)+…+k
n
f(x
n
)]=(k
1
+k
2
+…+k
n
)f(ξ).
解析
转载请注明原文地址:https://jikaoti.com/ti/j9fRFFFM
0
考研数学三
相关试题推荐
已知函数f(x,y)满足,则下列结论中不正确的是()
设连续型随机变量X的概率密度为f(x)=已知E(X)=2,P{1<X<3}=3/4,求:随机变量Y=ex的数学期望与方差。
已知随机变量X的概率密度为fX(x)=当X=x(x>0)时,Y服从(0,x)上的均匀分布。求(X,Y)的联合概率密度;
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1),证明:存在满足0<ξ<η<1的ξ,η,使得f’(ξ)+f’(η)=0。
设随机变量X和Y相互独立且都服从正态分布N(0,σ2),而X1,X2,X3与Y1,Y2,Y3,Y4分别是来自总体X和Y的两个简单随机样本,判断统计量服从的分布.
设总体X和Y相互独立,且都服从N(μ,σ2),分别为总体X与Y的样本容量为n的样本均值,则当n固定时,概率的值随σ的增大而()
设x→0时,是等价的无穷小量,试求常数a和k的值.
确定常数a使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
当x→0时,3x-4sinx+sinxcosx与xn为同阶无穷小,则n=______.
已知f(x)=1/(x2-3x+2),则f(n)(3)=________.
随机试题
求下列广义表运算的结果:(1)head((i,i,k));(2)tail((k,m,n));(3)head(tail(((a,b,c),(d))));
(),材木不可勝用也。
根据《合同法》,下列关于格式条款合同的说法中,正确的是()。
无方向信标台场地及其周围宜为()场地。
美国心理学家吉尔福特于20世纪提出了智力结构的理论,他认为智力有三个维度,这三个维度是()。
作为附加刑,剥夺政治权利包括剥夺担任国有企业、事业单位和人民团体领导职务的权利。()
A.颈浅筋膜B.颈深筋膜浅层C.颈脏器筋膜的壁层D.颈脏器筋膜的脏层E.颈深筋膜中层包被腮腺的是()。
一份研究报告显示.北大干部子女的比例从上世纪80年代的20%以上增至1997年的近40%,超过工人、农民和专业技术人员子女,成为最大的学生来源。有媒体据此认为,北大学生中干部子女比例20年来不断攀升,远超其他阶层。以下哪项如果为真,最能质疑上述媒体的观点?
罗斯(Ross)模型
TheSignificanceoftheDivisionofLabourThesignificanceofthedivisionoflabourwasfirstfoundbyAdamSmithinthe1
最新回复
(
0
)