首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组A3×4X=b有通解k1[1,2,0,-2]T+k2[-4,-1,-1,-1]T+[1,0,-1,1]T,其中k1,k2是任意常数,则下列向量中也是Ax=b的解向量的是( ).
设线性方程组A3×4X=b有通解k1[1,2,0,-2]T+k2[-4,-1,-1,-1]T+[1,0,-1,1]T,其中k1,k2是任意常数,则下列向量中也是Ax=b的解向量的是( ).
admin
2017-06-14
52
问题
设线性方程组A
3×4
X=b有通解k
1
[1,2,0,-2]
T
+k
2
[-4,-1,-1,-1]
T
+[1,0,-1,1]
T
,其中k
1
,k
2
是任意常数,则下列向量中也是Ax=b的解向量的是( ).
选项
A、α
1
=[1,2,0,-2]
T
B、α
2
=[6,1,-2,-2]
T
C、α
3
=[3,1,-2,4]
D、α
4
=[5,1,-1,-3]
T
答案
B
解析
由题设知,通解为
k
1
ξ
1
+k
2
ξ
2
+η=k
1
[1,2,0,-2]
T
+k
2
[4,-1,-1,-1]
T
+[1,0,-1,1]
T
.
因α
1
=ξ
1
,α
4
=ξ
1
+ξ
2
均是对应齐次方程的解,故A、D不成立,
α
2
,α
3
是否是AX=b的解向量,则要考虑是否存在k
1
,k
2
,使得
α
2
=k
1
ξ
1
+k
2
ξ
2
+η 及α
3
=k
1
ξ
1
+k
2
ξ
2
+η
即 α
2
-η=k
1
ξ
1
+k
2
ξ
2
,α
3
-η=k
1
ξ
1
+k
2
ξ
2
是否有解,因
[ξ
1
,ξ
2
,α
2
-η,α
3
-η]
知α
2
—η可由ξ
1
,ξ
2
表出,α
3
-η不能由ξ
1
,ξ
2
表出.故α
2
是AX=b的解向量.故选B.
转载请注明原文地址:https://jikaoti.com/ti/9swRFFFM
0
考研数学一
相关试题推荐
=________;
[*]
[*]
[*]
函数f(u,v)由关系式f[xg(y),Y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_________.
设矩阵A=已知线性方程组AX=β有解但不唯一,试求:(Ⅰ)a的值;(Ⅱ)正交矩阵Q,使QTAQ为对角矩阵.
(1997年试题,3)对数螺线p=eθ在点处的切线的直角坐标方程为_____________.
设f(x,y)在点(0,0)处连续,且,其中a,b,c为常数.讨论f(x,y)在点(0,0)处是否可微,若可微并求出df(x,y)|(0,0).
设f(x)在区间[0,1]上可微,且满足条件f(1)=,试证:存在ξ∈(0,1),使f(ξ)+ξf’(ξ)=0.
设f(x)连续,φ(x)=∫01f(xt)dt,且=A(A为常数),求φ’(x),并讨论φ’(x)在x=0处的连续性.
随机试题
某一投资领域内所有投资者都将共同面临的风险是
分辨率是下列________设备的主要性能指标。
五脏六腑之精皆上注于目,其中肝之精气上注于
A.长期咳嗽,咳大量脓痰,反复出现大咯血B.45岁以上伴长期大量吸烟病史,持续痰中带血C.咳嗽剧烈时痰中带血D.低热、盗汗、咯血E.夜间阵发性呼吸困难伴咳粉红色泡沫样痰肺癌的特点
关于特发性血小板减少性紫癜,正确的是
在某电商网站上,商品甲得到6个评价得分,分别是1、4、4、5、5、5;商品乙得到5个评价得分,分别是3、3、3、4、4,关于这两组数据的说法,正确的有()。
在考生文件夹下打开文档Word.docx,按照要求完成下列操作并以该文件名(Word.docx)保存文档。某高校为了使学生更好地进行职场定位和职业准备,提高就业能力,该校学工处将于2013年4月29日(星期五)19:30-21:30在校国际会议中心举办题
Manypeoplewronglybelievethatwhenpeoplereacholdage,theirfamiliesplacemeninnursinghomes.Theyareleftinthe【C1】_
Justiceinsocietymustincludebothafairtrialtotheaccusedandtheselectionofanappropriatepunishmentforthoseprove
A、England.B、Germany.C、America.D、France.D男士曾提到去Paris。巴黎在法国,故选D。
最新回复
(
0
)