首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1998年)设y=f(x)是区间[0,1]上的任一非负连续函数。 (I)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积; (Ⅱ)又设f(x)在区间(0,1
(1998年)设y=f(x)是区间[0,1]上的任一非负连续函数。 (I)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积; (Ⅱ)又设f(x)在区间(0,1
admin
2021-01-15
16
问题
(1998年)设y=f(x)是区间[0,1]上的任一非负连续函数。
(I)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积等于在区间[x
0
,1]上以y=f(x)为曲边的梯形面积;
(Ⅱ)又设f(x)在区间(0,1)内可导,且
证明(I)中的x
0
是唯一的。
选项
答案
(I)要证存在x
0
∈(0,1),使 [*] 令[*]然后证明存在x
0
∈(0,1),使φ(x
0
)=0。可以对φ(x)的原函数Φ(x)=[*]使用罗尔定理: Φ(0)=0, [*] 又由f(x)在[0,1]连续[*]φ(x)在[0,1]连续,故Φ(x)在[0,1]上连续,在(0,1)内可导。根据罗尔定理,存在x
0
∈(0,1),使Φ′(x
0
)=φ(x
0
)=0。 (Ⅱ)由φ′(x)=xf′(x)+f(x)+f(x)=xf′(x)+2f(x)>0,知φ(x)在(0,1)内单调增,故(I)中的x
0
是唯一的。
解析
转载请注明原文地址:https://jikaoti.com/ti/9O4RFFFM
0
考研数学一
相关试题推荐
设有甲、乙两名射击运动员,甲命中目标的概率是0.6,乙命中目标的概率是0.5,求下列事件的概率:从甲、乙中任选一人去射击,若目标被命中,则是甲命中的概率;
求
设有幂级数求:(Ⅰ)该幂级数的收敛半径与收敛域:(Ⅱ)该幂级数的导数在收敛区间内的和函数。
所谓假设检验的p值,是指在一个假设检验问题中,利用观测值能够做出拒绝原假设的最小显著性水平.给定显著性水平a,若P<a,则相应的检验统计量的值落在拒绝域中,所以拒绝原假设.反之p≥a,则不能拒绝原假设.设总体X~N(μ,9),X1,X2,…,X9为来自总体
设α,β为三维非零列向量,(α,β)=3,A=αβT,则A的特征值为_______.
设f(x)=∫0tanxarctant2dt,g(x)=x—sinx,当x→0时,比较这两个无穷小的关系.
计算下列不定积分:
设总体X的密度函数为f(x,θ)=(一∞<x<+∞),求参数θ的矩估计量和最大似然估计量.
y=上的平均值为_______。
设函数f(x)连续,(a为常数),又F(x)=∫0xf(xy)dy.求F’(x)并讨论F’(x)的连续性.
随机试题
车削细长轴时,产生变形和振动的原因有哪些?可采取哪些解决措施?
论他物权和自物权的联系与区别。
下列哪项属于非感染性发热的疾病
影响消费者行为的因素之一是()。
判别一项成本是否归属责任中心的原则有()。
2011年版《义务教育语文课程标准》与旧版课程标准相比有很大变化。请就其中一点谈谈你的看法。
一个善的行为,必须既有好的动机,又有好的效果。如果是有意伤害他人,或是无意伤害他人,并且这种伤害的可能性是可以预见的,在这两种情况下,对他人造成伤害的行为都是恶的行为。以下哪项叙述符合题干的断定?()
实践是对不可知论“最令人信服的驳斥”。()
下列有关法系与法律体系含义的表述,哪项是不正确的?()
从一般意义而言,犯罪客观方面的选择要件包括了()。
最新回复
(
0
)