首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
admin
2016-10-20
49
问题
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
选项
答案
考察带拉格朗日余项的一阶泰勒公式:[*]∈(0,1),有 f(x)=f(c)+f’(c)(x-c)+[*]f’’(ξ)(x-c)
2
, (*) 其中ξ=c+θ(x-c),0<θ<1. 在(*)式中,令x=0,得 f(0)=f(c)+f’(c)(-c)+[*]f’’(ξ
1
)c
2
,0<ξ
1
<c<1; 在(*)式中,令x=1,得 f(1)=f(c)+f’(c)(1-c)+[*]f’’(ξ
2
)(1-c)
2
,0<c<ξ
2
<1. 上面两式相减得 f(1)-f(0)=f’(c)+[*][f’’(ξ
2
)(1-c)
2
-f’’(ξ
1
)c
2
]. 从而f’(c)=f(1)-f(0)+[*][f’’(ξ
1
)c
2
-f’’(ξ
2
)(1-c)
2
],两端取绝对值并放大即得 [*] 其中利用了对任何c∈(0,1)有(1-c)
2
≤1-c,c
2
≤c,于是(1-c)
2
+c
2
≤1.
解析
证明与函数的导数在某一点取值有关的不等式时,常常需要利用函数在某点的泰勒展开式.本题涉及证明|f’(c)|≤2a+
,自然联想到将f(x)在点x=c处展开.
转载请注明原文地址:https://jikaoti.com/ti/7UxRFFFM
0
考研数学三
相关试题推荐
某公共汽车站每隔10min有一辆汽车到达,一位乘客到达汽车站的时间是任意的,求他等候时间不超过3min的概率.
掷两枚均匀的骰子,已知它们出现的点数各不相同,求其中有一个点数为4的概率.
证明[*]
一个家庭中有两个小孩.(1)已知其中有一个是女孩,求另一个也是女孩的概率;(2)已知第一胎是女孩,求第二胎也是女孩的概率.
已知向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4.
一个袋子中装有a+b个球,其中a个黑球,b个白球,随意地每次从中取出一球(不放回),求前i次中恰好取k个黑球的概率.
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
设f(x)在[a,b]上可积,又,证明φ(x)是[a,b]上的连续函数.
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
验证当0<x≤1/2时,按公式ex≈1+x+x2/2+x3/6计算ex的近似值时所产生的误差小于0.01,并求的近似值,使误差小于0.01.
随机试题
女性,18岁,右上臂创伤后疼痛、肿胀、畸形6小时就诊。体查:右上臂中段轻度肿胀,缩短畸形及反常活动。X线片示右肱骨中段横行骨折,骨折端重叠2cm。采用上述方法治疗后,患肢肘关节以下严重肿胀、青紫,右手发凉、麻木,被动活动手指感剧痛,右桡动脉搏动消失。最
请指出下列物质的作用A.氮气B.月桂氮卓酮C.可可豆脂D.硬脂酸镁E.司盘-85
下列属于常用奶的消毒方法的是()
商业银行获得的中国人民银行贷款的最长期限是()个月。
假设目前收益率曲线是正向的,如果预期收益率曲线变得较为平坦,则以下四种策略中,最适合理性投资者的是()
试述注意的规律与幼儿活动的关系。
在日本,提出废除中央集权制,实行地方分权;采用六三三四制,义务教育年限由六年延长到九年;男女儿童教育机会均等,一律实行男女同校制的是()
Thisbookisaninvitationtosharetheexperiencesofpeople(31)likeyou,learnanewlanguageorcometoliveinacultured
Itturnsoutthatagoodnight’srestisgoodforbusiness.One-thirdofAmericanworkersaren’tsleepingenoughtofunction
Foodwastehasbeenachronicproblemforrestaurantsandgrocerystores—withmillionsoftonslostalongthewayascropsareh
最新回复
(
0
)