首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知向量组(Ⅰ)α1,α2,α3; (Ⅱ)α1,α2,α3,α4; (Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4 .
已知向量组(Ⅰ)α1,α2,α3; (Ⅱ)α1,α2,α3,α4; (Ⅲ)α1,α2,α3,α5.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α1,α2,α3,α5-α4的秩为4 .
admin
2011-10-28
65
问题
已知向量组(Ⅰ)α
1
,α
2
,α
3
; (Ⅱ)α
1
,α
2
,α
3
,α
4
; (Ⅲ)α
1
,α
2
,α
3
,α
5
.如果各向量组的秩分别为r(Ⅰ)=r(Ⅱ)=3,r(Ⅲ)=4,证明:向量组α
1
,α
2
,α
3
,α
5
-α
4
的秩为4 .
选项
答案
证明 因为r(Ⅰ)=r(Ⅱ)=3,所以α
1
,α
2
,α
3
线性无关,而α
1
,α
2
,α
3
,α
4
线性相关,所以α
4
可由α
1
,α
2
,α
3
线性表示,即存在数λ
1
,λ
2
,λ
3
,使得 α
4
=λ
1
α
1
+λ
2
α
2
+λ
3
α
3
, 设有数k
1
,k
2
,k
3
,k
4
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
+k
4
(α
5
-α
4
)=θ, 将α
4
代入上式,化简得 (k
1
-λ
1
k
4
)α
1
+(k
2
-λ
2
k
4
)α
2
+(k
3
-λ
3
k
4
)α
3
+k
4
α
5
=θ, 由r(Ⅲ)=4知α
1
,α
2
,α
3
,α
5
线性无关,所以 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/1nmRFFFM
0
考研数学三
相关试题推荐
唯物辩证法认为,联系具有一系列特点,包括()
实行改革开放是()
社会主义经济基础建立的同时,我国的政治领域发生了重大变化,其具体表现为()
1911年5月,清廷宣布“铁路干线收归国有”,并与四国银行团订立粤汉、川汉铁路借款合同,借“国有”名义把铁路利权出卖给帝国主义,同时借此“劫夺”商股。这激起了保路风潮,其中最激烈的是()
十九大报告指出:优化区域开放布局,加大西部开放力度。赋予自由贸易试验区更大改革自主权。探索建设()
2022年5月30日,国家主席习近平向第二次中国-太平洋岛国外长会发表书面致辞。习近平强调,中方一贯坚持大小国家一律平等,秉持正确义利观和()理念发展同太平洋岛国友好关系。无论国际形势如何变幻,中国始终是太平洋岛国志同道合的好朋友、风雨
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
一批产品共有a十b个,其中a个正品,b个次品.今采用不放回抽样n次,问抽到的n个产品里恰有k个是正品的概率是多少?
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设n阶实对称矩阵A满足条件A2+6A+8E=O,且A+tE是正定矩阵,则t的取值范围为_______.
随机试题
实际生产中如何消除电弧偏吹?
下列哪味药具有疏肝解郁。活血止痛的功效
气单胞菌与肠杆菌科的主要鉴别试验是
下列中属于瘀血阻络胁痛的特点的有()
三相短路实用计算的假设中,变压器变比为()。
2014年辽宁的在业人口是()万人。
不以意识为主要研究对象的心理学派有
在获取与处理音频信号的过程中,正确的处理顺序是(13)。
Weallknowthatitispossibleforordinarypeopletomaketheirhomesontheequator(道),althoughoftentheymayfeeluncomfo
TheUKhasawell-respectedhighereducationsystemandsomeofthetopuniversitiesandresearchinstitutionsintheworld.Bu
最新回复
(
0
)